
KMEHR to FHIR case solution with UML-RSDS
Kevin Lano1, Alireza Rouhi2

1King’s College London, Strand, London, UK
2Azabaijan Shahid Madani University, Tabriz, Iran

Abstract
The KMEHR to FMIR case is a large-scale transformation in the medical domain, translating content from
the Belgium KMEHR electronic health record (EHR) format to the international standard FHIR format. We
analyse the existing ATL solution with regard to measures of quality, and propose an improved solution
using UML-RSDS. We show that this solution has eective performance on the test models provided with
the case. We also investigate the derivation of an inverse transformation from the UML-RSDS solution.

Keywords
Model transformation, UML-RSDS, ATL

1. Introduction

The existing ATL solution for this case [5] is a large-scale transformation, consisting of 20
matched rules, 32 lazy rules, 36 helper operations and 6 helper attributes. The library package
is 346 LOC, and the main transformation module is 973 LOC. Some individual rules are also
large (over size 100 using the 𝑐-measure of syntactic complexity from [1]).
Apart from the size of the transformation, there are also other quality aspects which could

hinder the understanding and maintenance of the transformation:

• Maximum OCL expression length (MEL): token count of the largest subexpression within
a rule, considered to be a aw if greater than 10 [6]

• Excessive fan-out (EFO): more than a threshold number (5) of dierent operations are
called from the rule [1]

• Excessive parameter length (EPL): more than a threshold number (5) of rule input, output
or local variables [1]

• Excessive rule size (ERS): rule size 𝑐 > 100 [1]
• Magic numbers (MGN): literal constants (other than 0, 1, true, false, null, enumeration
literals and the empty string) are used within a rule

• Duplicated code (DC): exactly cloned sections of a rule occurring in two or more rules.

High MEL, ERS, EFO and EPL in a rule can make comprehension of the rule dicult, and also
increase the cost of testing it. MEL can also imply high memory use. MGN and DC can increase
the work needed for maintenance.

Table 1 summarises the quality issues of the matched rules of the main transformation module
of the ATL case solution.

TTC Workshop, STAF 2023, Leicester, UK
" kevin.lano@kcl.ac.uk (K. Lano); rouhi1_80ir@yahoo.com (A. Rouhi)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:kevin.lano@kcl.ac.uk
mailto:rouhi\protect 1_80ir@yahoo.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Table 1
Quality issues in ATL transformation

Rule Issues

𝐹𝑜𝑙𝑑𝑒𝑟 c = 133, MEL (size = 110), EFO = 8
𝑆𝑢𝑚𝐸𝐻𝑅𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 c = 124, MEL (size = 25), EFO = 12, MGN = 6
𝑆𝑢𝑚𝐸𝐻𝑅𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑊𝑖𝑡ℎ𝐴𝑢𝑡ℎ𝑜𝑟 MGN = 3
𝑆𝑢𝑚𝐸𝐻𝑅𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑊𝑖𝑡ℎ𝐶𝑢𝑠𝑡𝑜𝑑𝑖𝑎𝑛 MGN = 4, DC: the 𝑟𝑒𝑓𝑃𝑟𝑒𝑓𝑖𝑥 out-pattern of these rules is

a parameterised clone.
𝑃𝑎𝑡𝑖𝑒𝑛𝑡 c = 99, EFO = 6, MEL (size = 16)
𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝐶𝑜𝑛𝑡𝑎𝑐𝑡 DC: cloned out-pattern for ℎ𝑢𝑚𝑎𝑛𝑁𝑎𝑚𝑒 with 𝑃𝑎𝑡𝑖𝑒𝑛𝑡 rule
𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 MGN = 1, DC: cloned out-patterns for 𝑜𝑖𝑑, 𝑛𝑖ℎ𝑖𝑖, 𝑟𝑖𝑧𝑖𝑣 with

𝑃𝑟𝑎𝑐𝑡𝑖𝑡𝑖𝑜𝑛𝑒𝑟 rule
𝑃𝑟𝑎𝑐𝑡𝑖𝑡𝑖𝑜𝑛𝑒𝑟 MGN = 1
𝑀𝑒𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛 MEL (size = 15), this expression is also cloned in 𝑉 𝑎𝑐𝑐𝑖𝑛𝑒 (DC)
𝑃𝑜𝑠𝑜𝑙𝑜𝑔𝑦 c = 160, EPL = 11, MGN = 2
𝑃𝑜𝑠𝑜𝑙𝑜𝑔𝑦𝑊𝑖𝑡ℎ𝑈𝑛𝑖𝑡𝐴𝑛𝑑𝑇𝑎𝑘𝑒𝑠 EPL = 6, MGN = 5
𝐴𝑙𝑙𝑒𝑟𝑔𝑦𝑂𝑟𝐼𝑛𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 c = 111, MGN = 12
𝐴𝑙𝑙𝑒𝑟𝑔𝑦𝑂𝑟𝐼𝑛𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒𝑊𝑖𝑡ℎ𝐶𝑜𝑑𝑒 MEL (size = 17), this expression is cloned in

𝑃𝑟𝑜𝑏𝑙𝑒𝑚𝑊𝑖𝑡ℎ𝐶𝑜𝑑𝑒 (DC)
𝑃𝑟𝑜𝑏𝑙𝑒𝑚 c = 108, EFO = 6, MGN = 7
𝑉 𝑎𝑐𝑐𝑖𝑛𝑒 c = 118, EPL = 7, MGN = 2, MEL (size = 15, DC)

Overall, there are 85 quality aws in the main module rules, including 23 rules with MGN,
5 with ERS, 7 MEL cases and 4 exact clones. There are some incompleteness issues, eg., the
mandatory feature 𝑡𝑖𝑡𝑙𝑒 of an FHIR 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is not set by the 𝑆𝑢𝑚𝐸𝐻𝑅𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛
rule or its extensions. The𝑚𝑠𝑔𝑆𝑒𝑛𝑑𝑒𝑟 function is left undened.

Some of these issues can be addressed by revising the ATL specication, for example, the large
number of magic numbers can be removed by dening the constant values as helper attributes
in a library. Rule inheritance can be used to reduce rule size and EPL. Clones can be refactored
into helper operations. However, other issues are dicult to resolve within ATL, in particular
the MEL case in the 𝐹𝑜𝑙𝑑𝑒𝑟 rule, which involves the union of several collections of FHIR
Bundle entries derived by specic mapping rules from dierent kinds of KMEHR transactions.
This arises because ATL out pattern assignments cannot be split into dierent steps which
successively accumulate subsets of a complex result, instead the entire result collection has
to be assembled in one expression and assigned in one step. Similarly with the MEL case in
𝑆𝑢𝑚𝐸𝐻𝑅𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛.
For these reasons, we decided to explore the possible improvement of the transformation

by expressing it in UML-RSDS, which has more powerful facilities for decomposing complex
transformation processing into smaller and more comprehensible parts (Figure 1).

2. Migrating from ATL to UML-RSDS

The AgileUML toolset for UML-RSDS already contains a parser and analyser for ATL, which
translates ATL rules and helpers into UML-RSDS use case postconditions and operations,

Migrate ATL model to
UML-RSDS model

KMEHR
model

FHIR
model

KMEHR2FHIR.atl
UML-RSDS

model

Analyzing quality flaws like MEL,
EFO, MGN, EPL, etc. in the ATL

source and then resolving them by
applying appropriate model

transformation patterns

Figure 1: Solution framework

respectively1. Quality aw analysis is performed on the ATL source.
Corresponding to ATL rule inheritance, UML-RSDS has rule conjunction, which enables

separation of dierent target mappings into separate rules/postconditions.
For example, the ATL rules:

rule A2B {
from a : A
to b : B

(y <- a.x)
}

rule A2C extends A2B {
from a : A
to b : B (cs <- Set{c}),

c : C (z <- a.x->size())
}

are translated to:

A::
B->exists(b | b.$id = self.$id & b.y = self.x)

A::
B->exists(b | b.$id = self.$id &

C->exists(c | c.$id = "c_" + $id &
c.z = self.x->size() & b.cs = Set{c}))

Because the $id attributes are identity attributes, the same 𝐵 instance is updated by both
constraints, for a given𝐴 instance, so that eectively the conjunction of the two inner predicates
𝑏.𝑦 = 𝑠𝑒𝑙𝑓.𝑥 and 𝑐.𝑧 = 𝑠𝑒𝑙𝑓.𝑥→𝑠𝑖𝑧𝑒() & 𝑏.𝑐𝑠 = 𝑆𝑒𝑡{𝑐} of the postconditions is achieved.

1github.com/eclipse/agileuml

Secondary output variables such as 𝑐 : 𝐶 can also be shared and updated by both rules, because
of the key assignments 𝑐.$𝑖𝑑 = “𝑐_” + $𝑖𝑑. It would be preferable to use meaningful names for
these output variables where possible, indicating the role that they play relative to the main
output variable. The mapsTo keyword of ATL indicates which input and output elements are
linked by the same identity:

to
t : T mapsTo s (...)

for the rst out variable 𝑡 means that 𝑡.$𝑖𝑑 = 𝑠.$𝑖𝑑 instead of 𝑡.$𝑖𝑑 = 𝑠𝑒𝑙𝑓.$𝑖𝑑.
Unlike with ATL rule inheritance, where only one child rule in a rule family may be executed

for a given input element, in UML-RSDS any number of rules may execute for a given element.
This enables more exible splitting of rules, in particular the Entity splitting pattern [3] can be
applied to dene separate rules to instantiate individual target elements derived from a single
source element, thus reducing or eliminating EPL aws. Entity splitting can also help to reduce
ERS and EFO aws [4].
ATL also supports inheritance between lazy rules, which correspond to entity or use case

operations in UML-RSDS. This form of inheritance can be expressed in UML-RSDS by conjunc-
tion of the operation postconditions of the inherited and inheriting operations, this applies in
the same manner as the conjunction of use case postconditions (UML-RSDS transformation
rules) given above.

To address MEL aws, ne-grained decomposition of postconditions can be dened in UML-
RSDS rules or operations. In particular, assigning a union of two or more collections to a target
feature 𝑔:

t.g = s.f1->union(s.f2)

can be split into multiple separate and simpler conjuncts:

s.f1 <: t.g & s.f2 <: t.g

within one rule postcondition, or further split into separate postconditions of successive rules.
<: denotes the subset operator ⊆. Interpreted operationally it adds all elements of the left
argument to the right.
UML-RSDS provides (since 2014) the “Restrict input ranges" pattern [3] to optimise rules

which involve multiple input linked elements. This corresponds to the new ATL Version 4.8
optimisation feature for this situation [5].

3. Improved solution in UML-RSDS

The transformation was re-expressed in UML-RSDS using a similar set of main rules and
auxiliary operations, however with a greater degree of factoring to reduce the number of clones
and to exploit the similarities between the processing involved in dierent ATL rules.
For example, several ATL rules call the 𝐶𝑜𝑑𝑒𝑎𝑏𝑙𝑒𝐶𝑜𝑛𝑐𝑒𝑝𝑡 and 𝐶𝑜𝑑𝑖𝑛𝑔𝑊𝑖𝑡ℎ𝐷𝑖𝑠𝑝𝑙𝑎𝑦 op-

erations together to wrap a 𝐶𝑜𝑑𝑖𝑛𝑔 instance in a 𝐶𝑜𝑑𝑒𝑎𝑏𝑙𝑒 instance. This double call can

be replaced by a single operation call of an operation 𝐶𝑜𝑑𝑒𝑎𝑏𝑙𝑒𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝐹𝑜𝑟𝐶𝑜𝑑𝑖𝑛𝑔 which
performs both the instance creation and wrapping.

The UML-RSDS transformation is organised using the Phased construction and Object index-
ing patterns [3]. Phased construction is used to build complex target objects successively from
their parts. Object indexing is used for target object lookup, and to ensure that basic types such
as 𝐹ℎ𝑖𝑟𝐵𝑜𝑜𝑙𝑒𝑎𝑛 and 𝐹ℎ𝑖𝑟𝑆𝑡𝑟𝑖𝑛𝑔 behave like value types: there are not multiple instances of
the types which have the same values. The transformation is represented as a UML use case
called 𝑚𝑎𝑖𝑛𝑀𝑜𝑑𝑢𝑙𝑒.

The KMEHR metamodel, and the relevant subset of the FHIR metamodel, are represented in
KM3 format in the le 𝑘𝑚𝑒ℎ𝑟.𝑘𝑚3. The forward transformation, together with auxiliary opera-
tions, is dened in 𝑡𝑡𝑐23.𝑘𝑚3. To produce an implementation for the transformation, these les
are successively loaded using the AgileUML File menu option “Load metamodel → KM3". The
specication should be type-checked (Analysis menu), and a design generated (Synthesis menu),
then code generated using the “Java6" option on the Build menu. The generated Java code is
placed in the 𝑘𝑚𝑒ℎ𝑟 subdirectory and can be compiled using 𝑗𝑎𝑣𝑎𝑐 𝑘𝑚𝑒ℎ𝑟/𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟.𝑗𝑎𝑣𝑎
followed by 𝑗𝑎𝑣𝑎𝑐 𝑘𝑚𝑒ℎ𝑟/𝐺𝑈𝐼.𝑗𝑎𝑣𝑎. The GUI can be run as 𝑗𝑎𝑣𝑎 𝑘𝑚𝑒ℎ𝑟/𝐺𝑈𝐼 , and pro-
vides a visual interface, the 𝑙𝑜𝑎𝑑𝑋𝑀𝐿𝑀𝑜𝑑𝑒𝑙 option loads 𝑖𝑛.𝑥𝑚𝑖, 𝑚𝑎𝑖𝑛𝑀𝑜𝑑𝑢𝑙𝑒 runs the
transformation, and 𝑠𝑎𝑣𝑒𝑀𝑜𝑑𝑒𝑙 saves the target model to 𝑜𝑢𝑡.𝑡𝑥𝑡.

3.1. Quality improvement

The transformation clarity has been improved in several aspects: (i) it is more concise, in
particular the matched rules part is reduced to 45% of the original length in terms of LOC; (ii)
a ‘bottom-up’ process is used to construct complex target objects successively from simpler
objects, whereas the ATL transformation uses a top-down process; (iii) explicit conversion
of source elements to target elements is used, whilst the ATL transformation uses implicit
conversion. For example, the expression 𝐴𝑑𝑑𝑟𝑒𝑠𝑠[𝑝𝑒𝑟𝑠𝑜𝑛𝑥𝑥.𝑎𝑑𝑑𝑟𝑒𝑠𝑠.$𝑖𝑑] returns the col-
lection of FHIR 𝐴𝑑𝑑𝑟𝑒𝑠𝑠 instances corresponding to the KMEHR 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑦𝑝𝑒 instances in
𝑝𝑒𝑟𝑠𝑜𝑛𝑥𝑥.𝑎𝑑𝑑𝑟𝑒𝑠𝑠; (iv) clones and other similar processing steps have been replaced by calls
of operations that factor out the duplicated code; (v) the frequency of magic numbers and other
aws has been reduced. Table 2 compares the ATL and UML-RSDS solutions for the matched
rules. Rule length is measured in LOC.
The total number of ‘magic numbers’ in the matched rules have been reduced from 47 to

13. The MEL values of matched rules have been reduced, in particular the MEL for 𝐹𝑜𝑙𝑑𝑒𝑟
has been reduced from size = 110 to 6, and the MEL for 𝑆𝑢𝑚𝐸𝐻𝑅𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 from size =
25 to 12. The MEL over all matched rules has been reduced to 13 (for 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑅𝑜𝑜𝑡). The
maximum 𝑐 value of matched rules has been reduced from 160 to 144. The 4 exact clones and
1 parameterised clone of the ATL version have been factored out. The 𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 and
𝑃𝑟𝑎𝑐𝑡𝑖𝑡𝑖𝑜𝑛𝑒𝑟 rules are now closely similar and could be further factored. Likewise for 𝑃𝑎𝑡𝑖𝑒𝑛𝑡
and 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝐶𝑜𝑛𝑡𝑎𝑐𝑡.
On the other hand, although the rule and operation inheritance organisation in the ATL

version has been retained in UML-RSDS, the explicit inheritance relations in ATL are only
implicitly represented in the UML-RSDS version2.

2The AgileUML tools do however issue warnings when two rules may update the same target object, as in the

Table 2
ATL and UML-RSDS versions

Rule ATL length UML-RSDS length

𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑅𝑜𝑜𝑡 8 5
𝐹𝑜𝑙𝑑𝑒𝑟 25 12
𝑆𝑢𝑚𝐸𝐻𝑅𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 48 24
𝑆𝑢𝑚𝐸𝐻𝑅𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑊𝑖𝑡ℎ𝐴𝑢𝑡ℎ𝑜𝑟 24 7
𝑆𝑢𝑚𝐸𝐻𝑅𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑊𝑖𝑡ℎ𝐶𝑢𝑠𝑡𝑜𝑑𝑖𝑎𝑛 27 10
𝑃𝑎𝑡𝑖𝑒𝑛𝑡 30 15
𝐴𝑑𝑑𝑟𝑒𝑠𝑠 11 7
𝑇𝑒𝑙𝑒𝑐𝑜𝑚 16 11
𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝐶𝑜𝑛𝑡𝑎𝑐𝑡 23 11
𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 23 7
𝑃𝑟𝑎𝑐𝑡𝑖𝑡𝑖𝑜𝑛𝑒𝑟 27 8
𝑀𝑒𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛 23 7
𝑃𝑜𝑠𝑜𝑙𝑜𝑔𝑦 54 13
𝑃𝑜𝑠𝑜𝑙𝑜𝑔𝑦𝑊𝑖𝑡ℎ𝑈𝑛𝑖𝑡𝐴𝑛𝑑𝑇𝑎𝑘𝑒𝑠 35 15
𝐴𝑙𝑙𝑒𝑟𝑔𝑦𝑂𝑟𝐼𝑛𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 45 22
𝐴𝑙𝑙𝑒𝑟𝑔𝑦𝑂𝑟𝐼𝑛𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒𝑊𝑖𝑡ℎ𝐶𝑜𝑑𝑒 20 7
𝑃𝑟𝑜𝑏𝑙𝑒𝑚 39 24
𝑃𝑟𝑜𝑏𝑙𝑒𝑚𝑊𝑖𝑡ℎ𝐶𝑜𝑑𝑒 19 7
𝑉 𝑎𝑐𝑐𝑖𝑛𝑒 44 14

Total 541 226

3.2. Performance

The UML-RSDS transformation was tested on the provided examples. The protocol dened in
[5] was followed. Table 3 shows the average execution time of the UML-RSDS transformation
on each input model, using three independent executions. These times are for Java version
1.8 with 25% processor allocation on a 4-core Windows 10 laptop with Intel i5-7440HQ CPU
at 2.8GHz, 8GB RAM. Standard Java settings are used, except that for the largest model the
stack size was increased to 8MB: java -Xss8m (needed for XML parsing, rather than the
transformation itself).

Table 3
Performance of UML-RSDS version

Input model Execution time (ms) Output model size (KB)

1 31.3 77
10 56.3 440
100 194.3 4171
1000 3857 42560

The produced output models are provided in the solution repository on Github.

case of matched rule inheritance.

4. Inverse transformation

Apart from facilitating formal analysis, the logical expression of transformation rules in UML-
RSDS also supports the synthesis of inverse transformations in many cases [2]. For certain
forms of predicates 𝑆𝑢𝑐𝑐 which may appear in a rule postcondition, an inverse 𝑆𝑢𝑐𝑐∼ can be
dened. For example, an assignment

𝑡.𝑔 = 𝑆𝑒𝑡{𝑠.𝑓}

inverts to 𝑠.𝑓 = 𝑡.𝑔→𝑎𝑛𝑦(). The inverse of a rule

A::
PCond(a) =>

B->exists(b | b.$id = $id & SCond(b) & Succ(a,b))

is then

B::
SCond(b) =>

A->exists(a | a.$id = $id & PCond(a) & Succ~(a,b))

in the case that 𝑆𝑢𝑐𝑐 is invertible. The inverse rule expresses an invariant of the forward
transformation.
The task of the inverse transformation in the KMEHR to FHIR case is to reconstruct the

KMEHR source information from a FHIR model which has been built using the forward transfor-
mation. A common situation in the forward transformation is the assignment of some function
of a source attribute to a target attribute, of the form

𝑡.𝑔 = 𝑒𝑥𝑝𝑟(𝑠.𝑓)

If an inverse function 𝑒𝑥𝑝𝑟∼ exists, then this assignment inverts to 𝑠.𝑓 = 𝑒𝑥𝑝𝑟∼(𝑡.𝑔). Likewise,

𝑡.𝑔 = 𝑆𝑒𝑡{𝑒𝑥𝑝𝑟(𝑠.𝑓)}

inverts to 𝑠.𝑓 = 𝑒𝑥𝑝𝑟∼(𝑡.𝑔→𝑎𝑛𝑦()). Thus in the UML-RSDS version of the 𝐴𝑑𝑑𝑟𝑒𝑠𝑠 rule, the
assignment

addrx.postalCode = Set{FhirString.newFhirString(self.zip)}

inverts to:

self.zip = addrx.postalCode.any.value

Specic inverse functions may need to be introduced, eg., to invert the 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝐿𝑖𝑛𝑒() op-
eration of an 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑦𝑝𝑒 instance to recover the individual 𝑠𝑡𝑟𝑒𝑒𝑡, ℎ𝑜𝑢𝑠𝑒𝑛𝑢𝑚𝑏𝑒𝑟 and
𝑝𝑜𝑠𝑡𝑏𝑜𝑥𝑛𝑢𝑚𝑏𝑒𝑟 values from the tab-separated concatenation of these values. In some cases
the basic mappings of values are not injective (eg., the mapping of gender designations from
KMEHR to FHIR, where both#𝑐ℎ𝑎𝑛𝑔𝑒𝑑 and #𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 values in KMEHR map to#𝑜𝑡ℎ𝑒𝑟
in FHIR). For these cases the inverse will néed to be custom-coded for the specic problem.
The inverse of a →𝑐𝑜𝑙𝑙𝑒𝑐𝑡(𝑥 | 𝑒𝑥𝑝𝑟(𝑥)) assembly is a →𝑐𝑜𝑙𝑙𝑒𝑐𝑡 of 𝑒𝑥𝑝𝑟∼ values. For

example:

t.given = s.firstname->collect(fn | FhirString.newFhirString(fn))

inverts to

s.firstname = t.given->collect(gn | gn.value)

In general, the FHIR metamodel and representation is more elaborate than the KMEHR
representation, so that one KMEHR object may map to a group of linked FHIR objects
(eg., a 𝑇𝑒𝑙𝑒𝑐𝑜𝑚𝑇𝑦𝑝𝑒 instance maps to linked 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑃𝑜𝑖𝑛𝑡, 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑃𝑜𝑖𝑛𝑡𝑆𝑦𝑠𝑡𝑒𝑚 and
𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑃𝑜𝑖𝑛𝑡𝑈𝑠𝑒 instances). Therefore the inverse transformation needs to combine in-
formation from multiple FHIR objects to populate the corresponding KMEHR object.
For example, the 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑃𝑜𝑖𝑛𝑡 rule:

TelecomType::
ContactPoint->exists(contactx |

contactx.$id = self.$id &
ContactPointSystem->exists(cpsys |

cpsys.$id = "cpsys_" + $id &
cpsys.value = self.system() &
ContactPointUse->exists(cpuse |

cpuse.$id = "cpuse_" + $id &
cpuse.value = self.contactPointUse() &
cpsys : contactx.system &
cpuse : contactx.use &
FhirString.newFhirString(

telecomnumber->trim()) : contactx.value)))

inverts to the rule:

ContactPoint::
cpsys : self.system &
cpuse : self.use =>

TelecomType->exists(telex |
telex.$id = self.$id &
CDTELECOM.newCDTELECOM(cpsys.value) : telex.cd &
telex.telecomnumber = self.value.any.value)

We have dened inverse rules for the 𝑃𝑎𝑡𝑖𝑒𝑛𝑡 rule and all rules that contribute to the
𝑃𝑒𝑟𝑠𝑜𝑛𝑇𝑦𝑝𝑒 to 𝑃𝑎𝑡𝑖𝑒𝑛𝑡 mapping, so that it is possible to recover KMEHR 𝑃𝑒𝑟𝑠𝑜𝑛𝑇𝑦𝑝𝑒
information from an FHIR 𝑃𝑎𝑡𝑖𝑒𝑛𝑡. The inverse transformation is dened by the 𝑓ℎ𝑖𝑟2𝑘𝑚𝑒ℎ𝑟
use case.
In some cases, source information is not mapped to the target, eg., the 𝑡𝑒𝑥𝑡 of an allergy or

intolerance. In such cases there is no way to reconstruct the complete source information from
the target.

The inverse transformation is implemented in the same way as the forward transformation.
The inverse transformation, together with auxiliary operations, is dened in 𝑓ℎ𝑖𝑟2𝑘𝑚𝑒ℎ𝑟.𝑘𝑚3.

𝑘𝑚𝑒ℎ𝑟.𝑘𝑚3 and 𝑓ℎ𝑖𝑟2𝑘𝑚𝑒ℎ𝑟.𝑘𝑚3 are successively loaded using the AgileUML File menu
option “Load metamodel→ KM3". Rename the specication to 𝑓ℎ𝑖𝑟2𝑘𝑚𝑒ℎ𝑟 (File menu, rst
option). The specication should be type-checked (Analysis menu), and a design generated
(Synthesis menu), then code generated using the “Java6" option on the Build menu. The
generated Java code is placed in the 𝑓ℎ𝑖𝑟2𝑘𝑚𝑒ℎ𝑟 subdirectory and can be compiled using
𝑗𝑎𝑣𝑎𝑐 𝑓ℎ𝑖𝑟2𝑘𝑚𝑒ℎ𝑟/𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟.𝑗𝑎𝑣𝑎 followed by 𝑗𝑎𝑣𝑎𝑐 𝑓ℎ𝑖𝑟2𝑘𝑚𝑒ℎ𝑟/𝐺𝑈𝐼.𝑗𝑎𝑣𝑎. The GUI
can be run as 𝑗𝑎𝑣𝑎 𝑓ℎ𝑖𝑟2𝑘𝑚𝑒ℎ𝑟/𝐺𝑈𝐼 , the 𝑙𝑜𝑎𝑑𝑀𝑜𝑑𝑒𝑙 option loads 𝑖𝑛.𝑡𝑥𝑡 (this should be the
same le 𝑜𝑢𝑡.𝑡𝑥𝑡 produced by the forward transformation), 𝑚𝑎𝑖𝑛𝑀𝑜𝑑𝑢𝑙𝑒 runs the transforma-
tion. In the existing code we have added println statements to display the generated KMEHR
elements.

Conclusions

We have described an alternative solution to the KMEHR to FHIR case, using UML-RSDS to
provide a more concise version of the transformation, with improved quality measures compared
to the original. The eciency of this solution is satisfactory and it can also be used as the basis
of an inverse transformation from FHIR to KMEHR.

References

[1] S. Kolahdouz Rahimi, K. Lano et al, A comparison of quality aws and technical debt in
model transformation specications, JSS, 2020.

[2] K. Lano, Agile Model-based Development using UML-RSDS, CRC Press, 2016.
[3] K. Lano et al., A survey of MT design patterns in practice, JSS, 140, pp. 48–73, 2018.
[4] A. Rouhi, K. Lano, Towards a pattern-based model transformation framework, Software:

Practice and Experience, 2023.
[5] D. Wagelaar, The TTC 2023 KMEHR to FHIR Case, TTC 2023, STAF 2023.
[6] M.Wimmer, S. Martinez, F. Jouault, J. Cabot, A Catalogue of Refactorings for model-to-model

transformations, Journal of Object Technology, vol. 11, no. 2, 2012, pp. 1–40.

	1 Introduction
	2 Migrating from ATL to UML-RSDS
	3 Improved solution in UML-RSDS
	3.1 Quality improvement
	3.2 Performance

	4 Inverse transformation

