
The Epsilon Solution to the KMEHR to FHIR Case
Antonio Garcia-Dominguez

1

1University of York, York, UK

Abstract

In recent years, there has been a push towards standardisation of interchange formats for health records: this case tackles the

problem of mapping Patient Summarized Records between the Belgian KMEHR and international HL7 FHIR standards. The

case proposed two evaluation dimensions: time/space efficiency, and understandability. This paper presents a port of the

original ATL rules to the Epsilon Transformation Language (ETL), with a focus towards helping the user understand the

transformation via transient visualisations using the Picto tool bundled with recent versions of Epsilon. While ETL is not as

fast as ATL, the ETL script is 1,096 lines long, compared to the 1,319 lines of ATL. At the same time, during the development

of this solution, a few improvements were identified and made to Epsilon itself.

Keywords
ATL, ETL, healthcare information systems, model transformation, model visualisation

1. Introduction
As described in the original case, allowing different

healthcare systems to efficiently share information with

each other is increasingly important to deliver rapid and

effective care (e.g. when needing medical treatment in

a different country). This has motivated the creation of

a number of specifications to exchange the information

that the system has about a patient. The Belgian KMEHR

(Kindly Marked-Up Electronic Health Care Record)
1

is

composed of an XML Schema describing a message gram-

mar, a recognized set of medical transactions that use

that grammar, and a set of reference tables with values to

be used in those messages. Health Level 7 (HL7) is a set

of international standards for exchanging health records,

which includes the FHIR (Fast Healthcare Interoperability

Resources) standards framework.

The original case description focused on transforming

one specific type of healthcare record, known by HL7

as an International Patient Summary (IPS)
2

. An IPS is

supposed to follow a patient across borders and make

it possible to quickly provide the information needed

for unplanned, cross-border care. The case description

included a reference implementation with over 1,300 lines

of ATL code, and specified two evaluation dimensions

for alternative solutions: 1) their efficiency in time and

space (in system memory), and 2) the understandability

of the transformations.

TTC’23: Transformation Tool Contest, Part of the Software
Technologies: Applications and Foundations (STAF) federated
conferences, Eds. A. Boronat, A. García-Domínguez, and G. Hinkel,
20th July 2023, Leicester, UK.
$ a.garcia-dominguez@aston.ac.uk (A. Garcia-Dominguez)

� 0000-0002-4744-9150 (A. Garcia-Dominguez)

© 2023 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1
https://www.ehealth.fgov.be/standards/kmehr/en

2
https://build.fhir.org/ig/HL7/fhir-ips/

This paper presents a solution based on the Eclipse Ep-

silon family of model management languages, available

from Github
3

. The transformation itself is a close port

of the original ATL rules to the Epsilon Transformation

Language (ETL) [1], but it is complemented by the use of

the Epsilon Picto [2] tool to produce interactive visuali-

sations of its transformation trace. While ETL does not

outperform the reference solution, it does take up fewer

lines of code (1,096 lines, compared to the 1,319 of ATL),

and its interactive visualisations can help understand the

transformation and correct issues. The solution passes all

the correctness checks provided by the case authors, and

automated tests check that the produced FHIR models

are line-by-line equivalent to the expected ones (except

for changes due to unique IDs which change between

executions).

The rest of the paper is structured as follows. Section 2

explains the ETL model-to-model transformation. Sec-

tion 3 describes how the internal ETL transformation

traces are serialised into a transformation trace model

and then visualised with Picto. Section 4 presents the

performance results of the solution and compares them

against those of the reference ATL solution. Finally, Sec-

tion 5 provides general conclusions for this paper, and

points out several areas in which this work can be refined.

2. Model transformation
The original case description did not provide a detailed

specification of the transformation involved, and the au-

thor was unfamiliar with KMEHR and FHIR. For that

reason, the approach taken was to translate the ATL

rules to ETL, given their similar approaches.

Due to time limitations, the ETL script is contained

in a single .etl file that is 1,096 lines long, with a pre

3
https://github.com/agarciadom/ttc2023-kmehr2fhir

mailto:a.garcia-dominguez@aston.ac.uk
https://orcid.org/0000-0002-4744-9150
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://www.ehealth.fgov.be/standards/kmehr/en
https://build.fhir.org/ig/HL7/fhir-ips/
https://github.com/agarciadom/ttc2023-kmehr2fhir

Listing 1: Excerpt of the Posology rule in ETL

1 rule Posology

2 transform s: KMEHR!PosologyType

3 to t: FHIR!MedicationStatement, msid: FHIR!Id,

4 /∗ ... ∗/
5 {

6 var i = s.eContainer();

7 var tx = i.eContainer();

8 var f = tx.eContainer();

9 // ...
10 }

(pre-execution) block being used to initialise the various

predefined mappings from special values in KMEHR to

FHIR, and instantiate the XMLTypeFactory needed to

deal with certain data types (i.e. dates).

Rules were mostly mapped 1-to-1 from the ATL

sources, but some adaptations were neded due to subtle

differences between ATL and ETL, which will be listed

below.

2.1. Assignment and equivalent mapping
The ATL <- operator is similar to the ETL ::= operator,

in that it will assign to the l-value the results of trans-

forming the r-value. However, ::= cannot be used with

objects that are not to be transformed (e.g. strings), and

therefore users must be careful to use = or ::= depending

on the situation.

ETL does not have an equivalent to the ATL mapsTo
keyword: in an ETL rule, every object in the to clause is

considered equivalent to the source object. This implies

that any calls to equivalent() or uses of the ::= opera-

tor must be careful to filter the r-value so only objects

compatible with the l-value are left.

2.2. Number of source objects per rule
ETL only allows one source object per rule, unlike ATL

which allows for multiple source objects. While ATL

required using a local search compiler to avoid multiple

scans of the model to obtain pattern matches, ETL rules

were simply written to apply to the innermost object,

and use x.eContainer() to access its containers as needed.

Comparing the Posology rules in ETL (Listing 1) and ATL

(Listing 2), the ETL approach is simpler to specify and

compute.

2.3. Helper operations and lazy rules
ATL helper operations were translated to Epsilon Object

Language operations, in generally a very straightforward

Listing 2: Excerpt of the Posology rule in ATL

1rule Posology {

2from
3f : KMEHR!FolderType,

4tx : KMEHR!TransactionType,

5i : KMEHR!ItemType,

6s : KMEHR!PosologyType (

7i.posology = s and
8tx.item−>includes(i) and
9f.transaction−>includes(tx) and
10i.isMedication

11)

12to
13t : FHIR!MedicationStatement mapsTo s (

14// ...
15),

16// ...
17}

way (with some simplifications, as the Epsilon languages

do not have the . and -> distinction that ATL has for

accessing members, which is awkward to use for most

new users). In addition, ETL allows for manually speci-

fying whether the operation results should be cached for

future calls (to save time or produce consistent results,

like uuid() which generates random Universally Unique

IDentifiers or UUIDs for a given FHIR object), or not (to

save memory): this level of control is not apparent in

ATL.

Some ATL lazy rules were translated to ETL lazy

rules (e.g. the rule hierarchy dedicated to Composition-

Sections), whereas others were turned into EOL opera-

tions as it wasn’t deemed useful to pollute transformation

traces with them (e.g. the creation of FhirStrings). Note

that some basic FHIR types did use lazy rules, precisely

for populating the transforamtion trace, e.g. FhirDate

and FhirDateTime. It is important to note that ETL suf-

fers a major performance hit as soon as any lazy rule is

used, as mentioned in its official documentation
4

: due to

time limitations, it was not possible to re-engineer the

transformation to completely avoid them (e.g. by adding

the appropriate guards).

2.4. Rule inheritance
It was noted that rule inheritance was somewhat differ-

ent in ETL and ATL, when both the base and extending

rule are non-abstract. Initial inspection of results sug-

gests that ATL will execute the base and extending rule

(if both applicable) on the same objects, whereas ETL will

end up producing a different set of objects.

4
https://eclipse.dev/epsilon/doc/etl/

https://eclipse.dev/epsilon/doc/etl/

Listing 3: Rule inheritance in ATL with multiple non-

abstract rules

1 rule SumEHRTransaction {

2 from
3 f : KMEHR!FolderType,

4 s : KMEHR!TransactionType (

5 f.transaction−>includes(s) and
6 s.cd−>exists(cd | cd.value = ’sumehr’)

7)

8 to /∗ ... ∗/ }

9

10 rule SumEHRTransactionWithAuthor

11 extends SumEHRTransaction {

12 from
13 f : KMEHR!FolderType,

14 s : KMEHR!TransactionType (

15 not s.txAuthor.oclIsUndefined()

16)

17 to /∗ ... ∗/ }

18

19 rule SumEHRTransactionWithCustodian

20 extends SumEHRTransaction {

21 from
22 f : KMEHR!FolderType,

23 s : KMEHR!TransactionType,

24 i : KMEHR!ItemType (

25 s.item−>includes(i) and
26 i.cd−>exists(cd | cd.value = ’gmdmanager’)

27)

28 to /∗ ... ∗/ }

Listing 4: Adapting multiple non-abstract rule inheri-

tance of ATL to ETL

1 rule SumEHRTransaction

2 transform s: KMEHR!TransactionType

3 to t: FHIR!Composition,

4 cid: FHIR!Id,

5 patRef: FHIR!Reference,

6 cStatus: FHIR!CompositionStatus,

7 dateTime: FHIR!fhir::DateTime

8 {

9 guard: s.cd.exists(cd| cd.value = ’sumehr’)

10 /∗ ∗/
11 if (s.txAuthor().isDefined()) { /∗ ... ∗/ }

12 if (s.custodianItem().isDefined()) { /∗ ... ∗/ }

13 }

Listing 5: Mapping ATL enumeration literals

1helper def : genderMap : Map(

2KMEHR!CDSEXvalues,

3FHIR!AdministrativeGenderEnum) =

4Map {

5(#changed, #other),

6(#female, #female),

7(#male, #male),

8(#unknown, #unknown),

9(#undefined, #other)

10};

Listing 6: Mapping ETL enumeration literals

1var genderMap = Map {

2KMEHR!CDSEXvalues#changed

3= FHIR!AdministrativeGenderEnum#other,

4KMEHR!CDSEXvalues#female

5= FHIR!AdministrativeGenderEnum#female,

6KMEHR!CDSEXvalues#male

7= FHIR!AdministrativeGenderEnum#male,

8KMEHR!CDSEXvalues#unknown

9= FHIR!AdministrativeGenderEnum#unknown,

10KMEHR!CDSEXvalues#undefined

11= FHIR!AdministrativeGenderEnum#other

12};

For instance, as shown in Listing 3 the ATL script had a

base non-abstract SumEHRTransaction rule, extended

by SumEHRTransactionWithAuthor and SumEHR-

TransactionWithCustodian. In the ETL script (as

shown in Listing 4), these three rules were combined

into one, where the body contained additional if blocks

implementing the behaviour of the subclasses.

2.5. Enumeration literals
ATL has a more convenient syntax for specifying enu-

meration literals: where the type is known from the con-

text, it is possible to simply use #changed to refer to that

literal. The Epsilon languages lack this capability, requir-

ing mentioning at least the name of the enumeration that

contains the literal (e.g. CDSEXvalues#changed). This is

awkward when writing complex expressions with one-off

use of enumeration literals in ETL, as often the modeller

has to stop writing and navigate the metamodels to find

out the relevant enumeration to mention. It also intro-

duces unnecessary repetition when specifying mappings

between enumeration literals in the source and target

metamodels.

The author has filed a pull request adapting this capa-

bility to the Epsilon languages
5

, but due to time limita-

tions it has not yet been reviewed and merged into the

main branch. Once it is merged, it should be possible to

further simplify the ETL script in this regard.

2.6. Java wrapper and test oracle
In order to integrate with the benchmark framework and

simplify its use, the transformation has been wrapped

into a Java class called Transformation, similarly to

the reference solution. The class provides a run() method

for launching the transformation, as well as a method

to specify if a trace model is desired (c.f. Section 3). The

Driver class from the reference solution (which han-

dles the environment variables from the Python run.py
script) was largely adopted as-is, only changing the ATL-

specific parts to use the new Transformation class.

In addition, the correctness of the transformation was

checked with JUnit 5 tests that performed line-based dif-

ferencing between the expected models and the obtained

models using the java-diff-utils library
6

, while dis-

carding changes due to UUIDs. EMF Compare was ini-

tially considered for comparing the expected and ob-

tained models, but was discarded as it produced too many

spurious differences in its standard configuration.

3. Generation and visualisation of
transformation traces

Having ported the transformation to ETL, the next goal

was to help users understand the relationships between

the original KMEHR model and the generated FHIR

model. It was decided to use Epsilon Picto [2] to develop

an interactive visualisation of the traces of the model

transformation, which relate source and target objects,

and rules.

3.1. Trace metamodel
Whereas ATL can automatically generate a trace model

if a “trace” model is added to its launch configurations

(based on a pre-existing trace metamodel), ETL only

keeps an internal data structure (the Transformation-

Trace) and leaves its serialisation into a model up to

the user (e.g. via a post-execution post block)
7

. It was

necessary to design and implement a trace metamodel,

as well as the code needed to populate trace models from

the internal TransformationTraces.

5
https://github.com/eclipse/epsilon/pull/42

6
https://github.com/java-diff-utils/java-diff-utils/

7
Incidentally, the ETL TransformationTrace was internally

revamped while developing this solution, replacing its original data

structure (a flat list) with a faster, lookup-based data structure: https:

//github.com/eclipse/epsilon/pull/44

The metamodel for ETL traces is shown in Figure 1,

and has been designed specifically for this problem. The

root of the model is a Trace from a source model to

a target model (both represented by their Unique Re-

source Identifiers or URIs). These contain a forest of

SourceObjects, a forest of TargetObjects, and a list of

TransformationRules. SourceObjects and Target-

Objects are both ModelObjects, for which we keep

their package URI, their EClass name, and their URI frag-

ment within their model. For TransformationRules,

their name, location, and whether they are lazy or not is

kept. Finally, we keep track of all the Transformations

of every SourceObject, and the Transformation that

produced a given TargetObject.

The use of forests to reproduce the containment trees

of the source and target models is to allow the trace

model to be entirely standalone for visualisation. This

was mostly due to practical reasons: the KMEHR and

FHIR model parsers had been provided as Maven artifacts

rather than Eclipse plugins, and so it was not possible

within the allotted time to browse KMEHR and FHIR

models using standard EMF tree-based model viewers.

Given more time, it would have been possible to produce

EMF tree-based model viewers for KMEHR and FHIR

models, and only keep the relationships between source

objects, target objects, and rules (similarly to TraceLinks

in ATL’s predefined trace metamodel).

3.2. Trace generation
Rather than using an post block in the ETL script to pop-

ulate a trace model, it was decided to write this code as

part of the Java Transformation class, to make it easier

to integrate into future versions of Epsilon (after gener-

alising its trace model to handling multiple source/target

models).

The algorithm largely consists of these major steps:

1. Create the forest of SourceObjects, start-

ing from the direct contents of the source

model. If the source object has been involved

in a transformation, ensure the appropriate

TransformationRule exists and is populated

from the ETL rule, create and populate its Trans-

formation object, and temporarily associate its

target objects to the Transformation object (e.g.

via a throwaway IdentityHashMap).

2. Create the forest of TargetObjects, starting

from the direct contents of the target model. If

the TargetObject has been involved in a trans-

formation (which we should know from the as-

sociations in the prior step), have it refer to the

transformation.

3. To manage the size of the source and target ob-

ject forests, these are now pruned: an object is

https://github.com/eclipse/epsilon/pull/42
https://github.com/java-diff-utils/java-diff-utils/
https://github.com/eclipse/epsilon/pull/44
https://github.com/eclipse/epsilon/pull/44

Trace

sourceModelUri : EString
targetModelUri : EString

TransformationRule

name : EString
location : EString
lazy : EBoolean = false

Transformation

ModelObject

ePackageURI : EString
eClassName : EString
uriFragment : EString

SourceObject TargetObject

[0..*] rules

[0..*] sources [0..*] targets

[0..*] children

[0..*] transformations

[0..*] children

[0..1] transformation

[0..*] targets

[0..1] rule

[0..*] transformations

Figure 1: Trace metamodel for ETL

Listing 7: Sample .picto file

1 <?nsuri picto?>

2 <picto format="egx" transformation="platform:/resource/etl/src/main/egx/txtrace.egx">

3 </picto>

only kept if itself or one of its descendants was

involved in a transformation. This removes many

of the objects that are unrelated to an ETL rule

(e.g. FhirStrings), and helps reduce the amount

of information shown to the user.

4. The TransformationRules in the trace are

sorted by name, for easier navigation.

3.3. Trace visualisation
Once the trace models were available, Epsilon Picto was

used to visualise them in an interactive manner. Picto is

implemented as an Eclipse plugin which provides a user

interface divided into two parts: a left part with a tree

of selectable views, and a right part with an embedded

web browser to show the visualisation generated from

the selected view.

The view tree is generated by executing an EGX (EGL

Co-Ordination Language) script with a number of rules,

specified by the user by adding a file with the same name

as the model plus a .picto suffix. An example for one

of the traces in this solution is shown in Listing 7.

An example EGX rule for Picto is shown in Listing 8. It

indicates that every SourceObject should be listed as an

item in the view tree under a certain path, with an icon

dependent on whether it participated in a transforma-

tion or not. If it were selected, Picto would use the EGL

source2graphviz.egl to generate a file which would

be rendered into a visualisation by using the circo algo-

rithm in the Graphviz
8

tool. It also specifies an (optional)

set of layers which can be toggled by the user: in this

case, there is a layer for controlling whether lazy rules

are shown or not (these layers need to be implemented

in the invoked EGL scripts). Finally, there are some ad-

ditional keys (focus, source, and trace) which are

made available as local variables to the EGL script.

Similar rules have been defined for TargetObject

and TransformationRule. Figure 2 shows what the

Picto visualisation for a given rule looks like. The Rule

8
https://graphviz.org/

https://graphviz.org/

Figure 2: Screenshot of Picto visualising a TransformationRule

Figure 3: Screenshot of Picto visualising a SourceObject

is shown as an aquamarine rectangle, SourceObjects

are orange parallelograms, and TargetObjects are light

orange (“bisque”) ellipses. Figure 3 and Figure 4 are vi-

sualisations of the source and target objects shown in

Figure 2. It is important to note that these visualisations

are interactive: users can click on a rule, source object

or target object in the graphical visualisation, and it will

automatically select and visualise the relevant view.

With this configuration of Picto, it is possible for users

to see at a glance which objects participated in a transfor-

mation (from the icons), and then drill down into which

objects they produced / were produced from, and which

rules were involved. In fact, it was shortly after using

this visualisation that the author noticed some “orphan”

objects were being left out of the DocumentRoot of the

target model, found the rules involved in their creation,

and fixed the issues producing these orphan objects. Picto

is designed with the idea that a visualisation quickly be-

comes overwhelming when the entirety of the model is

displayed at once, and instead focuses on the immediate

Figure 4: Screenshot of Picto visualising a TargetObject

Listing 8: Sample EGX rule for visualising Target-

Objects

1 rule SourceObject2Graphviz

2 transform sob: SourceObject

3 {

4 template : "source2graphviz.egl"

5 parameters : Map {

6 "path" = sob.path(),

7 "icon" = sob.transformations.isEmpty()

8 ? "document" : "tree_left",

9 "format" = "graphviz−circo",

10 "layers" = Sequence {

11 Map { "id"="lazy", "title"="Show lazy rules",

12 "active"=true }

13 },

14 "focus" = sob,

15 "source" = sob,

16 "trace" = trace::Trace.all.first

17 }

18 }

neighbours of the selected element (as in Figures 2 to 4).

This interactivity is achieved by having the EGL

scripts produce HTML links that trigger the showView
JavaScript function contributed by Picto into the embed-

ded web browser, which takes the tree path of the view

to be selected. There was some brief experimentation

with the showElement JavaScript function which allows

for selecting a model element in an appropriate editor

(e.g. to directly jump to the KMEHR/FHIR model element

in question), but this did not work as expected due to

the fact that the KMEHR/FHIR Maven artifacts were not

contributing any tree-based model editors to Eclipse (as

mentioned at the end of Section 3.1).

4. Benchmark results
Having developed the transformations and visualised

the results, the last part of the solution was to com-

pare its time and space (memory) usage and compare

it against the ATL reference solution. For performance

comparisons, the Python script included with the refer-

ence solution was used, except for producing plots com-

paring the results. Since the R-based reporting scripts

did not seem to have been updated for the KMEHR to

FHIR case study, a new set of R scripts (using Packrat for

reproducible R package management) were created in

the src/main/viz directory of the ETL solution. Each

combination of tool and model size (1, 10, 100 and 1000)

was run 3 times, and execution times and memory usages

were averaged.

The results are shown in Figures 5 and 6. ETL did not

outperform ATL in any scenario: while it took less time

and memory in its Initialization and Load phases, it was

approximately 10 times slower in the two smallest model

sizes, 6 times slower with model size 100, and over 2 times

slower with the largest model size. Looking at the graph,

there may be some indications that the performance gap

may be covered as models become larger, but this would

require additional experimentation. As mentioned above,

ETL had to switch to a slower execution strategy due

to the use of lazy rules, as ported over from the ATL

reference solution.

On the other hand, both tools used similar amounts of

memory, with ETL using slightly more (around 20% more

for the largest model size) but still only reaching about

142.50MiB. Memory does not seem to be a bottleneck in

this scenario.

5. Conclusions and future work
In this paper, a port of the reference implementation to

the Epsilon Transformation Language was presented and

evaluated. ETL was extended with code that produced

trace model similar in spirit to those produced by ATL,

with the difference that the source and target model con-

tainment forests are represented in the trace model, after

some pruning to remove subtrees that do not involve any

transformations. The trace model was used with Picto

to provide interactive visualisations of the transforma-

tion trace, which was helpful in detecting and correcting

some of the last remaining defects in this transformation.

ETL did not outperform ATL in this scenario: it is

believed that a major contributing factor may be the use

of lazy rules, as ported from the original ATL script. It

would be interesting to re-engineer the transformation

to avoid lazy rules, and compare again the performance

of ETL against ATL.

One line of work would be to take the generation of

trace models in this solution and merge it into the Epsilon

core, after some generalisation of the trace metamodel.

An appropriate Picto visualisation could be bundled to-

gether with this feature, inspired by this solution.

Finally, there were some improvements done to Ep-

silon during the development of this solution: the in-

ternal ETL TransformationTrace data structure was

optimised, and a pull request for adding ATL-style partial

enumerations is currently under review in the Eclipse

Epsilon project. There may be other opportunities to

take advantage of more advanced data structures within

Epsilon and improve performance (e.g. Guava caches,

multimaps, and tables).

References
[1] D. S. Kolovos, R. Paige, F. Polack, The Ep-

silon Transformation Language, in: Theory and

Practice of Model Transformations, First Interna-

tional Conference, ICMT 2008, Zürich, Switzer-

land, July 1-2, 2008, Proceedings, 2008, pp. 46–60.

URL: http://dx.doi.org/10.1007/978-3-540-69927-9_4.

doi:10.1007/978-3-540-69927-9_4.

[2] D. Kolovos, A. de la Vega, J. Cooper, Efficient gen-

eration of graphical model views via lazy model-

to-text transformation, in: Proceedings of the

23rd ACM/IEEE International Conference on Model

Driven Engineering Languages and Systems, MOD-

ELS ’20, Association for Computing Machinery, New

York, NY, USA, 2020, pp. 12–23. URL: https://doi.org/

10.1145/3365438.3410943. doi:10.1145/3365438.
3410943.

0.0058
0.0077 0.0077

0.0105

1.1750 1.1996 1.1846 1.1040

0.01

0.10

1.00

1 10 100 1000
Model size

T
im

e
(s

)

Tool etl reference

(a) Initialization phase

0.028 0.030 0.034 0.036

0.418 0.462

0.734

1.642

0.03

0.10

0.30

1.00

1 10 100 1000
Model size

T
im

e
(s

)

(b) Load phase

 1.86

 3.69

10.38

65.58

 0.19

 0.38

 1.71

27.06

0.3

1.0

3.0

10.0

30.0

1 10 100 1000
Model size

T
im

e
(s

)

(c) Run phase

Figure 5: Average execution times in seconds, by phase

http://dx.doi.org/10.1007/978-3-540-69927-9_4
http://dx.doi.org/10.1007/978-3-540-69927-9_4
https://doi.org/10.1145/3365438.3410943
https://doi.org/10.1145/3365438.3410943
http://dx.doi.org/10.1145/3365438.3410943
http://dx.doi.org/10.1145/3365438.3410943

 2.717 2.717 2.717 2.717

19.586 19.638 19.640 19.640

3

5

10

1 10 100 1000
Model size

M
em

or
y

us
ag

e
(M

iB
)

Tool etl reference

(a) Initialization phase

 2.868 2.869 2.869 2.869

22.909 23.352
27.241

66.201

3

10

30

1 10 100 1000
Model size

M
em

or
y

us
ag

e
(M

iB
)

(b) Load phase

 26.80 27.82

 38.04

142.50

 23.64 24.75

 33.63

120.20

30

50

100

1 10 100 1000
Model size

M
em

or
y

us
ag

e
(M

iB
)

(c) Run phase

Figure 6: Average memory usage in MiB, by phase

	1 Introduction
	2 Model transformation
	2.1 Assignment and equivalent mapping
	2.2 Number of source objects per rule
	2.3 Helper operations and lazy rules
	2.4 Rule inheritance
	2.5 Enumeration literals
	2.6 Java wrapper and test oracle

	3 Generation and visualisation of transformation traces
	3.1 Trace metamodel
	3.2 Trace generation
	3.3 Trace visualisation

	4 Benchmark results
	5 Conclusions and future work

