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Abstract

The TTC 2021 Incremental Laboratory Workflow benchmark presents
a challenging incremental transformation problem. This paper presents
our ATOL-based partial solution, and discusses the reasons why the
kind of incrementality supported by ATOL does not match the kind of
incrementality required to solve the problem.

1 Introduction

Incrementality is a mechanism by which a computation result can be updated after input changes without having
to perform all the computations required to produce the initial result again. This typically results in a significant
performance advantage, because much fewer computations typically need to be performed after each change than
were initially necessary. Some model transformations can be executed incrementally, depending on the language
they are specified in, and the execution engine that is used. For instance, some ATL transformations can be
quite efficiently executed incrementally with the ATOL [LCJCC19] engine.

However, not all incremental problems have the same properties, and it is not clear which incremental trans-
formation engine can solve which incremental problems. The TTC 2021 Incremental Laboratory Workflow
benchmark [Hin21] was specified in order to provide means to compare incremental engines on a very specific
incremental problem. This paper presents a partial solution to this problem written in ATL, and executed with
ATOL. Because the required kind of incrementality does not match what ATOL provides, the whole problem
could not be solved without abusing ATOL

The remainder of this paper is organized as follows. Section 2 reminds the reader about what kind of
incrementality can be achieved with ATOL. An overview of the problem to solve is given in Section 3. Section 4
presents our ATOL-based solution to this problem. Experimental results are brifelfy presented in Section 5, and
finally Section 6 concludes.

2 Incremental ATL with ATOL

The declarative nature of ATL makes it easily amenable to different execution modes. The original execution
mode is called batch mode, and simply creates a (set of) target model(s) from a (set of) source model(s)1. In-
crementality is a different execution mode supported by more recent ATL execution engines, which are able to
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1Although ATL is capable of handling multiple source and target models, the remainder of the paper will generally refer to a
single source, and a single target model to simplify explanations.



propagate source model changes into corresponding target model changes. ATOL [LCJCC19] is an incremen-
tal ATL execution engine, which leverages composable active operations [BBBJ10] in order to achieve model
transformation incrementality.
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Figure 1: Commutative incrementality diagram for transformation t creating B from A

The definition of incrementality supported by ATOL is that change propagation should be equivalent to full
re-execution. In this paper, we will call this commutative incrementality. This is illustrated by the commutative
diagram represented in Figure 1, in which:

• t is a model transformation, which can be viewed as a function.

• A, A′, B, and B′ are models. B is the result of applying t to A, which can be written: B = t(A). B′ is the
result of applying t to A′, which can be written: B′ = t(A′). B and B′ are target models of t, whereas A
and A′ are source models of t.

• δA and δB are changes, viewed as functions, respectively performed on A, and B, turning them into A′, and
B′. This can be written: A′ = δA(A), which is a source change wrt. t, and B′ = δB(B), which is a target
change wrt. t.

• prop is a change propagation higher-order function, which can translate changes on A into changes on B.
δB can thus be obtained from δA by applying prop, which can be written: δB = prop(δA)

This diagram commutes because B′ = t(δA(A)) = δB(t(A)). This can be rewritten without referring to δB in
the following way: B′ = prop(δA)(t(A)). Transformation re-execution corresponds to B′ = t(δA(A)), whereas
change propagation corresponds to: B′ = prop(δA)(t(A)).

ATOL automatically derives prop from t, making it relatively easy for transformation developers to execute
classical ATL transformations incrementally. Although the same B′ can be theoretically obtained from A, δA,
and t by following either path, each one has specific practical properties:

• Change propagation is generally faster. Transformation re-execution requires about the same amount
of computation for most simple source changes2. Change propagation is typically much faster for simple
changes, because it does not need to process the whole source model again.

• Change propagation performs in-place updates. Very often, only the actual structure of a model
matters, and models duplicated by re-executing a whole transformation are equivalent to in-place updated
ones for all purposes. However, in some situations, object identity matters, and it makes a difference whether
a model is updated in-place or not. This is the case, for instance, when target model elements are linked
to non-model elements, such as Graphical User Interface (GUI) elements. Updating the existing model will
not break its link with the GUI elements, whereas recreating it will result in a new model that does not
have any link with the GUI elements.

2A precise definition of what a simple change is is beyond the scope of this paper. The intuition is that a simple change modifies
a number of model elements which is small compared to the total number of elements in the model.



Now that the definition of commutative incrementality on which ATOL is based has been given, the role
of active operations can be explained briefly. An active operation is a basic transformation operation, such
as an OCL collect (called map in other languages), or select (called filter in other languages), equipped
with a propagation algorithm respecting commutative incrementality. Model transformations can be specified
by composing these operations, and change propagation is obtained by composing their change propagation
algorithms.

3 Problem Overview

The full specification of the TTC 2021 Incremental Laboratory Workflow benchmark is presented in [Hin21].
This section gives a brief overview of the problem definition. Solving this problem basically requires developing
a compiler for laboratory workflow jobs given to robotic liquid handlers. These robots can perform many tasks
required to, for instance, analyze biological samples. However, they must be given very detailed descriptions of
what low-level tasks, such as transferring tube contents, incubating samples, or washing containers, to perform
on which samples. An abstract syntax for these low-level job descriptions is provided as part of the benchmark
in the form of a metamodel called JobCollection.

Because this metamodel operates at a very low level of abstraction, a second, higher-level metamodel is
introduced: LaboratoryWorkflow. At this level, it is only necessary to specify a collection of tasks to be applied to
every specified samples. The job of the compiler to develop is first to create a model conforming to JobCollection
for every model conforming to LaboratoryWorkflow it is given. This requires assigning samples to tube runners
that may only contain a maximum of 16 samples, and then replicating jobs as necessary to transfer all samples
onto microplates that may only contain a maximum of 96 samples. Moreover, all transfer operations must be
performed on microplate columns that may only contain a maximum of 8 samples.

Then, the compiler must be able to support addition of new samples at any time, and to incorporate feedback
from the robot in the form of information about partially failed jobs. When new samples are added after older
samples have already been partially processed, they must be processed up to the same point by adding new jobs.
When some samples failed to be properly processed by a job, they must be marked as failed so that all future jobs
can skip them. However, already executed jobs must not be changed. Compilers that support applying these
modifications incrementally are expected to be more efficient than those that must recompile the full process.

4 Solution Presentation

The previous section has briefly presented the problem to solve, and this section continues by presenting our
ATOL-based solution. The solution presented here was partially inspired from the NMF solution provided in
the solutions/Reference folder of the case repository3.

4.1 Problem Incrementality vs. ATOL Incrementality

Firstly, change propagation must be able to proceed after either source modifications (adding samples), or
target modifications (marking jobs as partially failed). This requires some level of bidirectional propagation,
which active operations can achieve, but for which ATL is ill-equipped. Its OCL-based syntax does not support
specifying enough information for reverse change propagation to work in all cases. For instance, an OCL collect

operation can only take one lambda expression as argument to process elements in the forward direction, whereas
bidirectionality additionally requires a lambda expression to process elements in the reverse direction. ATOL
can however be used for this purpose because it enables users to specify some helper functions in xtend4, rather
than in ATL, while still keeping most of the transformation as declarative ATL code.

Secondly, the solution must be able to perform some changes while taking into account the fact that part of
the process has already been executed by the robot. This means that change propagation should not result in
the same model as what would be obtained by fully re-executing the transformation. The kind of incrementality
required here is therefore noncommutative, whereas ATOL was designed to make sure it performs commutative
incrementality.

3https://github.com/tecan/ttc21incrementalLabWorkflows/
4https://www.eclipse.org/xtend/

https://github.com/tecan/ttc21incrementalLabWorkflows/
https://www.eclipse.org/xtend/


4.2 Transformations

The overall process we implemented is represented on Figure 2. The source model (called M1) conforming
to the LaboratoryWorkflow metamodel is first processed by the LaboratoryChunking.atl transformation, which
distributes samples into tube runner-sized chunks, as well as in microplate column-sized chunks. The latter is
then distributed into microplate-sized chunks (i.e., 96/8 = 12 rows). This result in model M2 conforming to the
LaboratoryWorkflow’ metamodel, which extends the LaboratoryWorkflow metamodel with information about
chunks. This extension is basically the same as in the NMF solution, and is implemented by leveraging the
capability of ATOL to consider metaclasses that are not specified in Ecore. It is defined in the LaboratoryWork-
flow.xtend source file. This first transformation is relatively simple, but required implementing a new chunking
active operation. Because appending samples is the only required change, we have not implemented propagation
of other changes, such as removal, or insertion. Moreover, because this transformation targets a superset of its
source metamodel, it was implemented using ATL’s refining mode, which supports in-place model modification.
This means that only the new elements must be created, and the already existing elements can be kept as is,
which is relatively efficient when compared to a regular non-refining transformation, which would have to copy
all the existing elements.

LaboratoryWorkflow LaboratoryWorkflow' JobCollection

M1 M2 M3
LaboratoryChunking.atl Lab2Job.atl

Figure 2: Overview of the transformation process of our ATOL-based solution

In a second step, model M2 is then transformed by Lab2Job.atl, which performs the actual translation to the
JobCollection metamodel. Most of this transformation is relatively simple standard ATL code. The tricky part
is related to noncommutative incrementality, and is detailed in the next section.

4.3 Abusing ATOL Incrementality

Because the problem calls for change propagation that is not equivalent to full transformation re-execution (i.e.,
noncommutative incrementality), solving it with ATOL is not an easy task. To date, we have not been able to
fully solve the problem with ATOL, but have been able to abuse it into performing change propagations that
are not equivalent to full transformation re-executions.

The main mechanism is change filtering, which is performed for reverse propagation of tip state to sample
state. This is performed using an active operation that does not commute. It is implemented in method mapState

of Lab2Job.xtend.

However, even with this hack, our solution is not able to perform the required incremental propagations
correctly in all cases. The remaining problems with our solution could possibly be solved by similarly abusing
ATOL, but we decided not to do so until we better understand what having noncommutative active operations
entails. Here is the list of remaining problems in our solution that we have identified:

• Problem 1. Failed samples reappear in failed jobs, which is a change filtering issue. This may not be an
actual problem in practice because these jobs will not be re-executed anyway.

• Problem 2. Newly added samples require additional jobs to perform jobs already completed on existing
samples. This is again a case of noncommutative incrementality, which we have not attempted to solve.

• Problem 3. The previous and next references, which are mostly redundant with job ordering, are not
translated. This could probably be achieved with ATOL, but we have not tried to solve this issue.



4.4 Non-ATL Supporting Code

In addition to ATL code, and the previously described xtend helpers, some xtend code was also required for the
following aspects (identified with comments in the LaboratoryChunking.xtend and Lab2Job.xtend files):

• Accessing tuple properties. This is necessary on account of a current ATOL compiler limitation, but
this code could be automatically generated.

• Enumeration literal comparison helpers. This could be implemented in ATL, although string compar-
ison would have to be used because ATOL translates enumeration literal to and from strings.

• Number zero-padding. This is necessary to generate tube runner and microplate names that conform
to what is used in the benchmark’s change specification files (although [Hin21] does not specify padding).
This could be implemented in ATL, but would be cumbersome because of limited OCL support for string
operations.

Finally, the transformation driver, and the change application code are also written in xtend.

5 Experimentations

Our ATOL solution to the TTC 2021 Incremental Laboratory Workflow benchmark is available on GitHub5. It
reuses driver code from previous TTC contests.

Performance seems relatively good, as can be seen on Figures 3, 4, and 5, although we have not spent much
time on optimization, which could still be performed. However, since our solution does not completely solve the
problem, comparing its performance to other solutions may not be that meaningful.

6 Conclusion

This paper has presented our partial ATOL-based solution to the TTC 2021 Incremental Laboratory Workflow
benchmark. Although this benchmark requires some kind of incrementality, it is not exactly the same kind of
incrementality supported by ATOL, unless a better way to encode the problem as model transformation has
eluded our investigations. We have shown that ATOL can be abused to at least partially solve the problem, but
we have no theory with which to reason about our solution. It may therefore be the case that it could fail in
unexpected ways beyond the already identified ones.

This benchmark is definitely not the one to showcase ATOL on, but it presents an intriguing problem. A
new expanded theory of incrementality would be necessary to understand it precisely wrt. the active operation
approach. However, it is not clear whether such a new theory would be general enough to support other relevant
noncommutative incrementality problems, or if each new problem would require extending the theory.
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Figure 3: Benchmark results for new samples scenario
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Figure 4: Benchmark results for scale assay scenario
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Figure 5: Benchmark results for scale samples scenario
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