
Noname manuscript No.
(will be inserted by the editor)

YAMTL solution for the TTC 2021 Laboratory Workflows
case

Artur Boronat

Received: June 7, 2021

Abstract In this paper, we present the YAMTL solu-
tion to the Laboratory Workflows case of TTC 2021.
This solution illustrates how to specify a consistency
relation between two metamodels that may map one
object of the input model to several objects of the out-
put model using a declarative style. In addition, the
solution makes use of generated boilerplate code and
rule inheritance for the sake of conciseness. The initial
experiments show that YAMTL introduces little over-
head over the reference solution, implemented in plain
code using the .NET Framework, and yet it addresses
its main problems: change propagation is encoded using
declarative rules and traceability is handled implicitly
by YAMTL.

1 Introduction

YAMTL [1] is a model transformation language for
EMF models, with support for incremental execu-
tion [2], designed as an internal DSL of Xtend.

The solution to the Laboratory Workflows case il-
lustrates novel features of YAMTL:

– Matched rules toMany that enable repeated rule appli-
cation for the same input object subject to a valid
termination condition based on the match count.
The match count can be retrieved with the expres-
sion 'matchCount'.fetch(). Whenever a rule toMany is
involved in a rule inheritance hierarchy, all rules in
that hierarchy must be toMany too. All variants of
the operator fetch() have been augmented with an
additional parameter, the occurrence of the trans-
formation step from which the target object must be

A. Boronat
School of Informatics, University of Leicester, Leicester, UK
E-mail: artur.boronat@leicester.ac.uk

fetched. By default, this parameter is 0, correspond-
ing to the first transformation step that is found for
the input object or input match. Hence the fetch op-
erator is equipped for working with several matches
of a rule toMany.

– When the global correctness check, which ensures
that a model transformation is a mapping, is dis-
abled, there may be several rules transforming the
same input object. This allows YAMTL to represent
relational model transformations that are more ex-
pressive than mapping model transformations. The
scope of the correctness check is at rule level though.
A rule cannot be applied more than once to the same
input object, unless the rule is declared as toMany and
has a valid termination condition for the repetition.

– Change specifications to select the type of changes
that can be propagated. Change specifications were
first introduced in the Bib2Doc case of TTC 2019
where they were used to detect incorrect changes.
In the solution of TTC 2021, change specifications
are used to define the language of changes that need
to be processed by YAMTL.

– Boilerplate code generation to reduce the amount of
code needed to access matched objects and created
output objects within filter expressions and out-
put initialization actions. For example, expressions
of the type val in_sample = 'in_sample'.fetch()as Sample

can be skipped. Syntactic helpers use the names in
input and output elements, so that matched objects
can be accessed in filters by using the name of the
corresponding input element, and both matched ob-
jects and created output objects can be accessed in
output initialization actions using the name of the
corresponding input/output elements. Code gener-
ation takes into account rule inheritance and ap-
pends the name of the type of the corresponding el-

2 Artur Boronat

ement when there are ambiguities (an element is de-
clared in different rules with different output types).
Whenever, the same name has been used for an
input/output element in unrelated rules and these
have different types, then the name of the rule is ap-
pended to resolve ambiguities. Matched objects and
built-in helpers (like matchCount) are also available as
syntactic helpers.

2 Solution

The transformation is available at https://github.com/
arturboronat/ttc21incrementalLabWorkflows.

In the following we briefly describe the transforma-
tion rules as they appear. Transformation rules are ap-
plied in two phases, first all labware is initialized with
rules that have priority 0. Then the rest of rules are
applied.

Rule root transforms the JobRequest into a
JobCollection.

rule('root')

.in('in_jobRequest', LAB.jobRequest)

.out('out_jobCollection', JOB.jobCollection)

Listing 1: Rule ’root’.

Rule reagent_trough generates a Trough for each input
Reagent.

rule('reagent_->_trough')

.in('in_reagent', LAB.reagent)

.out('out_trough', JOB.trough) [

val in_jobRequest = in_reagent.eContainer.eContainer as

JobRequest

val out_jobCollection = in_jobRequest

.fetch('out_jobCollection', 'jobRequest_->_jobCollection') as

JobCollection

out_trough.name = in_reagent.name

out_jobCollection.labware.add(out_trough)]

Listing 2: Rule ’reagent_trough’.

Rule jobRequest_->_tubeRunner generates as many
TubeRunners as required for the input JobRequest, ac-
cording to the expression jobRequest.samples.size /

TUBE_RUNNER_CAPACITY. This rule has priority zero.

rule('jobRequest_->_tubeRunner').priority(0).toMany

.in('jobRequest', LAB.jobRequest).filter [matchCount <=

max_count(jobRequest.samples.size, TUBE_RUNNER_CAPACITY)]

.out('tubeRunner', JOB.tubeRunner)[

val out_jobCollection = jobRequest

.fetch('out_jobCollection', 'jobRequest_->_jobCollection') as

JobCollection

var tubeRunner_list = out_jobCollection.labware.filter[it

instanceof TubeRunner]

tubeRunner.name = String.format('''TubeRunner%02d''',

tubeRunner_list.size)

out_jobCollection.labware.add(tubeRunner)]

Listing 3: Rule ’tubeRunner’.

Rule jobRequest_->_microplate generates as many
Microplatess as required for the input JobRequest, ac-
cording to the expression jobRequest.samples.size /

MICROPLATE_CAPACITY. This rule has priority zero.

rule('jobRequest_->_microplate').priority(0).toMany

.in('jobRequest', LAB.jobRequest).filter [matchCount <=

max_count(jobRequest.samples.size, MICROPLATE_CAPACITY)]

.out('microplate', JOB.microplate)[

val out_jobCollection = jobRequest

.fetch('out_jobCollection', 'jobRequest_->_jobCollection') as

JobCollection

var microplate_list = out_jobCollection.labware.filter[it

instanceof Microplate]

microplate.name = String.format('''Plate%02d''',

microplate_list.size+1)

out_jobCollection.labware.add(microplate)]

Listing 4: Rule ’microplate’.

Rule sample_->_allocation computes the allocation of
samples to tube runner and microplate cavities. This
rule is used to complete the initialization of tube run-
ners and microplates as is therefore tagged with priority
zero. The rule is transient and the JobCollection that is
created is immaterial. Therefore, this rule is only used
to perform some additional initialization in other ob-
jects. In addition, the rule remembers what sample is
stored in each cavity in order to implement the applica-
tion of backward changes. This rule has an undo action,
which updates this backward traces when the sample is
no longer allocated.

rule('sample_->_allocation').priority(0).transient

.in('in_sample', LAB.sample)

.filter [in_sample.state == SampleState.WAITING]

.out('out_aux', JOB.jobCollection)[

val in_jobRequest = in_sample.eContainer as JobRequest

val tubeRunnerNumber = getTubeRunner_number(in_jobRequest,

in_sample)

val tubeRunner = in_jobRequest

.fetch('tubeRunner', 'jobRequest_->_tubeRunner',

tubeRunnerNumber) as TubeRunner

tubeRunner.barcodes += in_sample.sampleID

val microplateNumber = getMicroplate_number(in_jobRequest,

in_sample)

val microplateCavity = getMicroplate_cavity(in_jobRequest,

in_sample)

val microplate = in_jobRequest

.fetch('microplate', 'jobRequest_->_microplate',

microplateNumber) as Microplate

// to facilitate backward propagation

backward_insert(microplate.name, microplateCavity, in_sample)]

.undo[

val in_jobRequest = in_sample.eContainer as JobRequest

val microplateNumber = getMicroplate_number(in_jobRequest,

in_sample)

val microplateCavity = getMicroplate_cavity(in_jobRequest,

in_sample)

val microplate = in_jobRequest

https://github.com/arturboronat/ttc21incrementalLabWorkflows
https://github.com/arturboronat/ttc21incrementalLabWorkflows

YAMTL solution for the TTC 2021 Laboratory Workflows case 3

.fetch('microplate', 'jobRequest_->_microplate',

microplateNumber) as Microplate

microplate_cavity_to_sample.get(microplate.name).remove(microplateCavity)

]

Listing 5: Rule ’allocation’.

Rule tip_creation creates a TipLiquidTransfer for each
input sample and adds itself to the corresponding
LiquidTransferJob. When the sample has failed, the
TipLiquidTransfer is removed in the undo action.

rule('tipCreation')

.in('in_sample', LAB.sample)

.filter[in_sample.state != SampleState.ERROR]

.in('in_step', LAB.protocolStep)

.filter[(in_step instanceof DistributeSample ||

in_step instanceof AddReagent)]

.out('out_tip', JOB.tipLiquidTransfer) [

val step = in_step

val tip = out_tip

val in_jobRequest = step.eContainer.eContainer as JobRequest

val matchCount = ltjMatchCount(step, in_sample)

val out_job = step.fetch('out_job', 'job', matchCount) as

LiquidTransferJob

switch(step) {

DistributeSample: {

tip.volume = step.volume

out_job.source = in_jobRequest.getTubeRunner(in_sample)

tip.sourceCavityIndex =

in_jobRequest.getTubeRunner_cavity(in_sample)

}

AddReagent: {

tip.volume = step.volume

tip.sourceCavityIndex = 0

val reagent = step.reagent

val trough = reagent.fetch() as Trough

out_job.source = trough

}

}

out_job.target = in_jobRequest.getMicroplate(in_sample)

tip.targetCavityIndex =

in_jobRequest.getMicroplate_cavity(in_sample)

out_job.tips.add(tip)]

.undo[

val occurrence = ltjMatchCount(in_step, in_sample)

val out_job = in_step.fetch('out_job', 'job', occurrence) as

LiquidTransferJob

out_job.tips.remove(out_tip)]

Listing 6: Rule ’tip_creation’.

Rule job is an abstract rule that declares how to
create a job, adding it to the output job collection. This
rule is toMany and all its child rules are so too.

rule('job').isAbstract.toMany

.in('in_step', LAB.protocolStep)

.out('out_job', JOB.job) [

out_job.protocolStepName = in_step.id

val in_jobRequest = in_step.eContainer.eContainer as JobRequest

val out_jobCollection =

in_jobRequest.fetch('out_jobCollection',

'jobRequest_->_jobCollection') as JobCollection

out_jobCollection.jobs.add(out_job)

val prev_step = in_step.previous

if (in_step.previous !== null) {

val maybe_list = prev_step.fetch()

if (maybe_list!==null) {

if (maybe_list instanceof List) {

out_job.previous.add(maybe_list.head)

} else {

out_job.previous.add(maybe_list as Job)

}

}

}]

Listing 7: Rule ’job’.

Rule tipContainer is an abstract rule that computes
the number of times the rule needs to be applied for
creating liquid transfer jobs. Rule distributeSample and
addReagent cast down the input and output pattern ele-
ments to concrete types.

rule('tipContainer').isAbstract.toMany

.inheritsFrom(#['job'])

.in('in_step', LAB.protocolStep).filter[

(in_step instanceof DistributeSample ||

in_step instanceof AddReagent) &&

matchCount <= max_count(sampleCount, MICROPLATE_CAPACITY)]

.out('out_job', JOB.job),

rule('distributeSample').toMany

.inheritsFrom(#['tipContainer'])

.in('in_step', LAB.distributeSample)

.out('out_job', JOB.liquidTransferJob),

rule('addReagent').toMany

.inheritsFrom(#['tipContainer'])

.in('in_step', LAB.addReagent)

.out('out_job', JOB.liquidTransferJob),

Listing 8: Rules ’tipContainer’.

Rule plateJobs is an abstract rule that computes the
number of times the rule needs to be applied for cre-
ating jobs that work with a whole microplate (wash
and incubate). Rule wash and incubate cast down the in-
put and output pattern elements to concrete types and
complete the initialization of output objects.

rule('plateJobs').isAbstract.toMany

.inheritsFrom(#['job'])

.in('in_step', LAB.protocolStep).filter[

(in_step instanceof Wash ||

in_step instanceof Incubate) &&

matchCount <= max_count(sampleCount, MICROPLATE_CAPACITY)]

.out('out_job', JOB.job),

rule('wash').toMany

.inheritsFrom(#['plateJobs'])

.in('in_step', LAB.wash)

.out('out_job', JOB.washJob) [

val out_job = out_job_WashJob // set to vble to avoid fetching

several times

val microplate = getMicroplateFromMatchCount(in_step,

matchCount)

out_job.microplate = microplate

val start = MICROPLATE_CAPACITY * matchCount

val end = sampleCount - 1

4 Artur Boronat

for (i: start..end)

out_job.cavities += i % MICROPLATE_CAPACITY],

rule('incubate').toMany

.inheritsFrom(#['plateJobs'])

.in('in_step', LAB.incubate)

.out('out_job', JOB.incubateJob) [

val in_step = in_step_Incubate

val out_job = out_job_IncubateJob

out_job.temperature = in_step.temperature

out_job.duration = in_step.duration

val matchCount = 'matchCount'.fetch() as Integer

val microplate = getMicroplateFromMatchCount(in_step,

matchCount)

out_job.microplate = microplate]

Listing 9: Rules ’plateJobs’.

3 Evaluation

In the following we will consider the evaluation criteria
of the article.

Understandability. The new features of YAMTL helped
in specifying the transformation in a declarative way,
managing traceability implicitly. Such type of specifica-
tion can be challenging for model transformation lan-
guages with strong correctness criteria, where matches
need to be unique: e.g. for ATL. This approach for defin-
ing the transformation should help in defining more
complex behaviour in the liquid transfer robot, where
additional cases are defined with additional rules. Fur-
thermore, such additional cases can be treated using
specialized rules that reuse behaviour from existing
ones.

Conciseness. The transformation rules for generating
jobs reuse logic, both for matching and for initializ-
ing the resulting objects, via rule inheritance. In this
case, rule inheritance helped reduce the amount of code
needed for each type of job. On the other hand, boil-
erplate code, generated by YAMTL, has helped reduce
the amount of code required for fetching values from the
execution environment from within filter conditions and
output initialization actions.

Number of elements in the low-level model . This fea-
ture has been left for consideration at the workshop. In
the given changes, all wash and incubate jobs execute
without failure. It seems that this hampers the dele-
tion of jobs, which can only occur when all of the tips
of a liquid transfer job are removed. When applying
changes, only changes corresponding to samples that
failed (that is, whose state are error) and new samples
were applied.

Execution time. For a very preliminary comparison of
performance results, I implemented a correctness check
algorithm1 (following the guidelines in the case descrip-
tion) and a benchmark driver class. After ten runs on a
MacBookPro11,5 "Core i7" 2.5 GHz with 16 GB RAM,
the median run times (in milliseconds) both of the ini-
tial model transformation and of the updates are shown
in Figure 1. The solutions available in the main repos-
itory were used to compare our solution.

In these results, YAMTL adds a little overhead over
the reference solution and it shows a very reasonably
performance for both for the initial transformation and
for propagating updates forward. However, a more thor-
ough inspection on how changes are considered for the
different tools is required in order to be able to infer
reliable conclusions.

References

1. Boronat, A.: Expressive and efficient model transformation
with an internal dsl of xtend. In: Proceedings of the 21th
ACM/IEEE International Conference on MoDELS, pp. 78–
88. ACM (2018)

2. Boronat, A.: Incremental execution of rule-based model
transformation. International Journal on Software Tools
for Technology Transfer 1433-2787 (2020). DOI 10.
1007/s10009-020-00583-y. URL https://doi.org/10.1007/

s10009-020-00583-y

1 The correctness check provided with the benchmark could
not be executed.

https://doi.org/10.1007/s10009-020-00583-y
https://doi.org/10.1007/s10009-020-00583-y

YAMTL solution for the TTC 2021 Laboratory Workflows case 5

Initial Transformation Forward Update Propagation

0
500
1000
1500
2000
2500
3000
3500
4000

1 2 4 8 16 32

scale assay

0

5000

10000

15000

20000

25000

30000

1 2 4 8 16 32 64 128 256 512 1024

scale_samples

0

500

1000

1500

2000

1 2 4 8 16 32 64 128

new_samples

0

20

40

60

80

100

1 2 4 8 16 32

scale_assay

0

10
20

30
40

50
60

70

1 2 4 8 16 32 64 128 256 512 1024

scale_samples

0
20
40
60
80
100
120
140
160

1 2 4 8 16 32 64 128

new_samples

0

500

1000

1500

2000

1 2 4 8 16 32 64 128

new_samples

Reference NMF YAMTL

Figure 1: Preliminary results in milliseconds: initial transformation (left) and all udpates per model (right).

	Introduction
	Solution
	Evaluation
	Understandability.
	Conciseness.
	Number of elements in the low-level model
	Execution time.

