
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

The Epsilon Solution to the OCL2PSQL Case
Antonio García-Domínguez

a.garcia-dominguez@aston.ac.uk

Aston University

Birmingham, UK

ABSTRACT
There have been several attempts to map Object Constraint Lan-

guage queries to SQL: one of these is the OCL2PSQL mapping

proposed by Nguyen and Clavel. In this paper, I describe an im-

plementation of OCL2PSQL using two languages from the Eclipse

Epsilon project: 740 lines of ETL code for the model-to-model trans-

formation itself, and 96 lines of EGL code for a model-to-text trans-

formation that produces more readable SQL than the reference

version. The solution passes all correctness tests set out in the

original framework: the transformation has a median time of 0.93s

across all scenarios.

KEYWORDS
OCL, SQL, model transformation, abstract syntax graphs

ACM Reference Format:
Antonio García-Domínguez. 2021. The Epsilon Solution to the OCL2PSQL

Case. In Proceedings of ACM Conference (Conference’17). ACM, New York,

NY, USA, 4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The OMG Object Constraint Language is a well known, standard-

ized language for specifying constraints and queries in models:

while typically associated with UML, it has been widely used for

MOF-based modelling languages, and particularly those based on

the Ecore implementation of EMOF. Given the increasingly large

size of the models used by Model-Driven Engineering practition-

ers, one common solution is to persist them in databases. This has

motivated attempts to map the OCL queries (written in terms of

the abstract syntax of the modeling language) to SQL queries that

run directly on the underlying relational database used to store the

models.

Some of these attempts have used imperative features such as

loops and cursors to deal with iterators, possibly reducing their

compatibility across vendors (due to the limited standardization

of these features). OCL2PSQL (“OCL to pure SQL”) is an approach

that provides a mapping of nested iterators while staying entirely

within the broadly standardized and declarative parts of SQL [2].

The OCL2PSQL TTC case has selected a core subset of this map-

ping (with some erratum added since the original release of the

mapping), and has invited tool authors to demonstrate the usability,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

conciseness and ease of understanding of their model transforma-

tion languages through alternative implementations of this subset.

This paper presents an outline of a solution based on the Eclipse

Epsilon family of model management languages. Since the original

release in 2006 [1], Eclipse Epsilon has grown to include languages

for model-to-model transformation (the Epsilon Transformation

Language), model-to-text transformation (the Epsilon Generation

Language), model validation, pattern matching, model migration,

unit testing and other tasks. The solution passes all correctness

checks, though some minor refinements of the proposed mappings

were required.

The rest of the paper is structured as follows: Section 2 explains

the overall structure of the solution. Section 3 describes the key fea-

tures of the implemented model-to-model transformation fromOCL

to SQL. Section 4 describes the alternative model-to-text transfor-

mation that has been developed from the SQLmodels to textual SQL

queries. Finally, Section 5 presents the preliminary performance

results obtained by the solution author.

2 OVERALL STRUCTURE
The Epsilon solution to the OCL2PSQL case is a Java application,

using Apache Maven for its dependency management. Epsilon is

usable as a standalone Java library, with stable versions available

through Maven Central and snapshot versions available through

the OSS Sonatype repository. The solution should work in Epsilon

2.3.0, but uses the latest 2.4.0 interim versions to avoid a warning

message when using the Epsilon Generation Language.

The solution reuses the basic scaffolding of the reference solution,

including the generated code for the OCL and SQLmetamodels, and

the classes responsible for interpreting the environment variables,

communicating with the MySQL database, and performing the

correctness tests. The solution adds the following Java classes:

• SampleLauncher, which transforms all OCL queries with-

out using the environment variables of the benchmark frame-

work. This is mostly for internal development.

• OCL2SQL, which encapsulates a model-to-model transfor-

mation written in the Epsilon Transformation Language

into an easy-to-use Java class. More information on the ETL

transformation is available in Section 3.

• SQL2Text, which replaces the model-to-text transformation

in the reference solution with one based on the Epsilon Gen-

eration Language. More details on the EGL transformation

are given in Section 4.

Finally, the solution changed the code of the Solution class in

the reference solution to use the OCL2SQL and SQL2Text classes

from above.

1

https://orcid.org/0000-0002-4744-9150
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Antonio García-Domínguez

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

3 MODEL-TO-MODEL TRANSFORMATION
WITH ETL

The Epsilon project includes several languages for performing

model transformations:

• The Epsilon Object Language (EOL) is an OCL-inspired im-

perative language which is well suited for small in-place

(endogenous) model transformations, though it can be used

for purely imperative exogenous transformations as well.

• The Epsilon Transformation Language (ETL) builds on top

of EOL by adding the concept of a rule, which transforms a

certain type of source model element (possibly with some

guards limiting its applicability) to a target model element.

The rule scheduling can be kept entirely declarative, or can

be controlled to some extent through the use of “greedy” or

“lazy” rules. ETL is well-suited to exogenous transformations,

where a new model is produced from the source model.

• Flock can be thought of as ETL with an automated “copy-

unless-otherwise-stated” default strategy. It is well suited for

model migration tasks, where a model has to undergo small

changes from one version of a metamodel to the next.

• The Epsilon Wizard Language (EWL) is a variant of EOL

which allows users to define “wizards” that users can man-

ually trigger on specific model elements, performing small

in-place transformations (perhaps with some simple user

interaction).

Out of these languages, ETL was chosen since the original for-

mulation of OCL2PSQL as a collection of recursive mappings by

source type was a close match to the rules used by ETL. For the

most part, each of those mappings was translated into an ETL rule,

and calls to mape (e)were translated into e.equivalent() calls in ETL.
The e.equivalent() built-in operation retrieves the SQL subgraph

produced from the OCL e subtree, allowing the different SQL sub-

trees to be linked together. The OCL2PSQL case did not require

any manual rule scheduling or the use of greedy/lazy rules: the

automated rule scheduling done by ETL based on source element

types and guards was sufficient.

ETL allows for breaking up the transformation across several

modules. This made it relatively easy to iteratively implement the

various stages in OCL2PSQL and test out how it behaved for the

various challenges. Listing 1 shows the main script of the ETL trans-

formation: it is composed of a number of import statements that

bring in the rules needed for each stage, and a post rule which

places the one PlainSelect without a container into a Select-

Statement element as mandated by the SQL metamodel.

Some of the OCL2PSQL mappings had to produce significantly

large SQL subtrees: to keep the code concise, a library of EOL op-

erations (utilities.eol) was created and reused from the ETL

rules. This library largely contained a set of functions for simple cre-

ation of SQL model elements, an implementation of the OCL2PSQL

SVarse (e) and FVars(e) functions, and several other miscellaneous

functions. As a simple example, Listing 2 shows the code needed to

transform OCL integer literals to the target SQL metamodel.

The ETL rules are for the most part a direct one-to-one transla-

tion from the descriptions at the end of the OCL2PSQL case, except

for two changes.

Listing 1: Main ETL script
1 import 's0_literals.etl';
2 import 's1_equals_and.etl';
3 import 's2_allInstances.etl';
4 import 's3_size.etl';
5 import 's4_collect_variable.etl';
6 import 's5_attributes.etl';
7 import 's6_associationEnds.etl';
8 import 's7_exists.etl';
9 import 's8_existsWithFree.etl';

10

11 post {
12 var firstRootSelect = SQL!PlainSelect.all.selectOne(ps|ps.

eContainer.isUndefined());

13

14 var stmt = new SQL!SelectStatement;

15 stmt.selectBody = firstRootSelect;

16 }

Listing 2: Excerpt of ETL for stage 0 (integer literals)
1 import 'utilities.eol';
2

3 /∗
4 ∗ All these boil down to:
5 ∗
6 ∗ mape(l) =
7 ∗ SELECT l as res, 1 as val
8 ∗/
9

10 rule IntLiteral
11 transform e:OCL!IntegerLiteralExp

12 to ps:SQL!PlainSelect {

13 ps.selItems.add(longSelectItem('res', e.integerValue.asLong()));

14 ps.selItems.add(longSelectItem('val', 1l));

15 }

The first change was considering one special case listed in the

original OCL2PSQL paper [2] but not in the case paper. The map-

ping of collect and exists in the original OCL2PSQL paper covered

the case when v < FVars(b), but this mapping had been omitted

from the OCL2PSQL case description. It turned out that this special

case was needed for some of the queries, e.g. challenge 0 in stage 4

(Car.allInstances()−>collect(c|5)).

The second change was due to an unexpected interaction be-

tween the recursive approach used to define OCL2PSQL, the def-

inition of SubSelect.selectBody as a containment reference in the

SQL metamodel, and how the ETL e.equivalent() operation works.

ETL will only apply a certain rule once to each matching source

model element, and from them on e.equivalent() will always return

the same counterpart in the target model (e.g. the exact same ob-

ject). This resulted in some SQL queries “losing” the body of their

SubSelect objects to other subtrees of the SQL model, as they also

needed the mapping for that part of the OCL expression.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

The Epsilon Solution to the OCL2PSQL Case Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Listing 3: Fix for “subtree stealing” in ETL
1 operation copyIfContained(value) {

2 var emfTool = new Native(

3 "org.eclipse.epsilon.emc.emf.tools.EmfTool");

4 if (value.eContainer.isDefined()) {
5 return emfTool.ecoreUtil.copy(value);

6 }

7 return value;

8 }

For instance, consider the final challenge:

Car.allInstances()−>exists(c|c.owners−>exists(p|p.name = 'Peter'))

In this query, the SQL mapping of c.owners−>exists(...) and the

SQLmapping of p.name both require using themapping of c.owners

as a subquery. ETL successfully maps c.owners to SQL, but EMFwill

not allow a single model element to be contained from more than

one place. Since the mapping of c.owners−>exists(...) will complete

last, it will effectively “steal” the subquery representing c.owners

from the mapping of p.name.

The fix for this issue turned out to be simple, as shown in Listing 3.

All uses of the e.equivalent() operation were wrapped into a new

EOL operation: the operation tested if this “stealing” was about

to take place (i.e. if the PlainSelect was already contained in

another SubSelect), and if so it performed a deep cloning of the

SQL subtree.

A better fix (which unfortunately would have required a rewrit-

ing of the input files for this case) would be to change the SQL

metamodel so that SubSelect.selectBody is no longer a containment

reference, and the same PlainSelect can be reused from multiple

SubSelect model elements.

Even further, this suggests that the OCL2PSQL mapping really

produces a SQL expression graph (where some subexpressions are

reused) rather than a SQL abstract syntax tree. Instead of running

the same subquery from several places, it may be advisable to

redefine OCL2PSQL so it produces a sequence of SQL queries rather

than a single large SQL query: it would run these reused subqueries

first, and then provide their results to the higher-level queries.

Otherwise, there may be a risk that the SQL query could grow

exponentially if sufficiently large subqueries have to be duplicated

across several locations.

Overall, the transformation required writing 14 rules across 528

lines of ETL code, with a support library of EOL operations that

was 212 lines long. These line counts included whitespace and

comments.

4 MODEL-TO-TEXT TRANSFORMATION TO
SQL WITH EGL

The reference solution included a model-to-text transformation

that produced the SQL query to be run in MySQL from the SQL

model. During the development of this solution, it was found that

the generated SQL was difficult to read in the presence of multiple

levels of subqueries, as it was entirely on one line.

In order to improve the readability of the SQL queries and help

with the debugging, an alterntive implementation was written in 96

lines of EGL. The EGL template traverses the SQLmodel recursively

from the root SelectStatement, breaking up SELECT statements,

CASE expressions, joins, and subqueries across multiple lines.

Listing 4: Excerpt of EGL to generate SQL query text
1 [%= SelectStatement.all.first.generate() %][%

2

3 @template
4 operation SelectStatement generate() { %]

5 [%=self.selectBody.generate()%];
6 [% }

7

8 @template
9 operation PlainSelect generate() { %]

10 SELECT

11 [% for (si in self.selItems) { %]

12 [%=si.generate() + (hasMore ? "," : "")%]

13 [% }

14 if (self.fromItem.isDefined()) { %]

15 FROM [%=self.fromItem.generate() %]

16 [% }

17 for (join in self.joins) {%]
18 [%=join.generate()%]

19 [% }

20 if (self.whereExp.isDefined()) { %]
21 WHERE [%=self.whereExp.generate() %]
22 [% }

23 if (self.groupBy.isDefined()) { %]
24 [%= self.groupBy.generate() %]
25 [%

26 }

Listing 4 shows an excerpt of the EGL script: the first line is the

entry point of the entire script, kicking off the recursive descent of

the SQL model from the SelectStatement. The EGL script makes

heavy use of template operations, which allow EGL templates in

their body and return strings which can be used within expressions

(e.g. for concatenaing separators, as in line 12).

The script also uses some of the built-in Epsilon variables: has-
More is a built-in Epsilon variable available in loops which is true

if and only if there are more values after the current one.

Listing 5: SQL-specific LanguageFormatter used to indent
the SQL query text

1 private static class SQLFormatter extends LanguageFormatter {

2 private static final String increasePattern = "\\(\\s∗$";

3 private static final String decreasePattern = "^\\)";

4

5 public SQLFormatter() {

6 super(Pattern.compile(increasePattern, Pattern.MULTILINE),

7 Pattern.compile(decreasePattern, Pattern.MULTILINE));

8 }

9 }

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Antonio García-Domínguez

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Listing 6: SQL query for challenge 0 in stage 1, as generated
by EGL

1 SELECT
2 TEMP_left.res = TEMP_right.res AS res,

3 1 AS val

4 FROM (

5 SELECT
6 2 AS res,

7 1 AS val

8) AS TEMP_left

9 JOIN (

10 SELECT
11 3 AS res,

12 1 AS val

13) AS TEMP_right;

One useful feature in EGL is its ability to integrate formatters that
postprocess the generated text. In particular, the EGL Language-

Formatter was customised for SQL (as shown in Listing 5)to auto-

matically indent the lines of the SQL script to improve readability,

while keeping the EGL script as simple as possible. This class only

requires the regular expressions that should increase and decrease

the indentation level after a match. Using this script, queries are

generated in the more readable form shown in Listing 6.

5 PRELIMINARY RESULTS
After implementing the ETL model-to-model transformation and

the EGL model-to-text transformation, Java code to encapsulate

these transformations and integrate them with the TTC benchmark

framework was added. The transformations passed all correctness

cases for all scenarios across all stages and challenges.

In terms of execution time, the transformations were run in

a Lenovo X1 laptop with an i7-6600U CPU running at 2.60GHz

with 16GiB of physical RAM, running Ubuntu Linux 20.04.2 LTS

with Linux 5.4.0-74-generic and the Oracle JDK 11.0.8. The default

Java memory allocation settings were used (no -Xmx or other JVM

options were given). The Docker image provided by the OCL2PSQL

case authors was used to run MySQL, using Docker Engine 20.10.7.

The execution and test times are shown in Figure 1. It must be

noted that the execution times only cover the ETL model-to-model

transformation: the testing times include the EGL model-to-text

transformation and the execution of the SQL queries in MySQL.

This is the same approach followed by the reference solution.

In general, it can be seen that the transformation generally com-

pletes within 1 second, and testing times are within 0.5 seconds.

More specifically, transformation times ranged between 0.83s and

1.06s, with a median time of 0.93s. Testing times ranged between

0.33s and 0.44s, with a median time of 0.36s.

REFERENCES
[1] Dimitrios S. Kolovos, Richard F. Paige, and Fiona Polack. 2006. The Epsilon Object

Language (EOL). In Model Driven Architecture - Foundations and Applications,
Second European Conference, ECMDA-FA 2006, Bilbao, Spain, July 10-13, 2006,
Proceedings. 128–142. https://doi.org/10.1007/11787044_11

[2] Hoang Nguyen Phuoc Bao and Manuel Clavel. 2019. OCL2PSQL: An OCL-to-

SQL Code-Generator for Model-Driven Engineering. In Future Data and Security
Engineering, Tran Khanh Dang, Josef Küng, Makoto Takizawa, and Son Ha Bui

(Eds.). Springer International Publishing, Cham, 185–203. https://doi.org/10.1007/

978-3-030-35653-8_13

Figure 1: Transformation and test execution times in seconds per stage and challenge.

4

https://doi.org/10.1007/11787044_11
https://doi.org/10.1007/978-3-030-35653-8_13
https://doi.org/10.1007/978-3-030-35653-8_13

	Abstract
	1 Introduction
	2 Overall structure
	3 Model-to-model transformation with ETL
	4 Model-to-text transformation to SQL with EGL
	5 Preliminary results
	References

