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ABSTRACT
There have been several attempts to map Object Constraint Lan-

guage queries to SQL: one of these is the OCL2PSQL mapping

proposed by Nguyen and Clavel. In this paper, I describe an im-

plementation of OCL2PSQL using two languages from the Eclipse

Epsilon project: 740 lines of ETL code for the model-to-model trans-

formation itself, and 96 lines of EGL code for a model-to-text trans-

formation that produces more readable SQL than the reference

version. The solution passes all correctness tests set out in the

original framework: the transformation has a median time of 0.93s

across all scenarios.
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1 INTRODUCTION
The OMG Object Constraint Language is a well known, standard-

ized language for specifying constraints and queries in models:

while typically associated with UML, it has been widely used for

MOF-based modelling languages, and particularly those based on

the Ecore implementation of EMOF. Given the increasingly large

size of the models used by Model-Driven Engineering practition-

ers, one common solution is to persist them in databases. This has

motivated attempts to map the OCL queries (written in terms of

the abstract syntax of the modeling language) to SQL queries that

run directly on the underlying relational database used to store the

models.

Some of these attempts have used imperative features such as

loops and cursors to deal with iterators, possibly reducing their

compatibility across vendors (due to the limited standardization

of these features). OCL2PSQL (“OCL to pure SQL”) is an approach

that provides a mapping of nested iterators while staying entirely

within the broadly standardized and declarative parts of SQL [2].

The OCL2PSQL TTC case has selected a core subset of this map-

ping (with some erratum added since the original release of the

mapping), and has invited tool authors to demonstrate the usability,
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conciseness and ease of understanding of their model transforma-

tion languages through alternative implementations of this subset.

This paper presents an outline of a solution based on the Eclipse

Epsilon family of model management languages. Since the original

release in 2006 [1], Eclipse Epsilon has grown to include languages

for model-to-model transformation (the Epsilon Transformation

Language), model-to-text transformation (the Epsilon Generation

Language), model validation, pattern matching, model migration,

unit testing and other tasks. The solution passes all correctness

checks, though some minor refinements of the proposed mappings

were required.

The rest of the paper is structured as follows: Section 2 explains

the overall structure of the solution. Section 3 describes the key fea-

tures of the implemented model-to-model transformation fromOCL

to SQL. Section 4 describes the alternative model-to-text transfor-

mation that has been developed from the SQLmodels to textual SQL

queries. Finally, Section 5 presents the preliminary performance

results obtained by the solution author.

2 OVERALL STRUCTURE
The Epsilon solution to the OCL2PSQL case is a Java application,

using Apache Maven for its dependency management. Epsilon is

usable as a standalone Java library, with stable versions available

through Maven Central and snapshot versions available through

the OSS Sonatype repository. The solution should work in Epsilon

2.3.0, but uses the latest 2.4.0 interim versions to avoid a warning

message when using the Epsilon Generation Language.

The solution reuses the basic scaffolding of the reference solution,

including the generated code for the OCL and SQLmetamodels, and

the classes responsible for interpreting the environment variables,

communicating with the MySQL database, and performing the

correctness tests. The solution adds the following Java classes:

• SampleLauncher, which transforms all OCL queries with-

out using the environment variables of the benchmark frame-

work. This is mostly for internal development.

• OCL2SQL, which encapsulates a model-to-model transfor-

mation written in the Epsilon Transformation Language

into an easy-to-use Java class. More information on the ETL

transformation is available in Section 3.

• SQL2Text, which replaces the model-to-text transformation

in the reference solution with one based on the Epsilon Gen-

eration Language. More details on the EGL transformation

are given in Section 4.

Finally, the solution changed the code of the Solution class in

the reference solution to use the OCL2SQL and SQL2Text classes

from above.
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3 MODEL-TO-MODEL TRANSFORMATION
WITH ETL

The Epsilon project includes several languages for performing

model transformations:

• The Epsilon Object Language (EOL) is an OCL-inspired im-

perative language which is well suited for small in-place

(endogenous) model transformations, though it can be used

for purely imperative exogenous transformations as well.

• The Epsilon Transformation Language (ETL) builds on top

of EOL by adding the concept of a rule, which transforms a

certain type of source model element (possibly with some

guards limiting its applicability) to a target model element.

The rule scheduling can be kept entirely declarative, or can

be controlled to some extent through the use of “greedy” or

“lazy” rules. ETL is well-suited to exogenous transformations,

where a new model is produced from the source model.

• Flock can be thought of as ETL with an automated “copy-

unless-otherwise-stated” default strategy. It is well suited for

model migration tasks, where a model has to undergo small

changes from one version of a metamodel to the next.

• The Epsilon Wizard Language (EWL) is a variant of EOL

which allows users to define “wizards” that users can man-

ually trigger on specific model elements, performing small

in-place transformations (perhaps with some simple user

interaction).

Out of these languages, ETL was chosen since the original for-

mulation of OCL2PSQL as a collection of recursive mappings by

source type was a close match to the rules used by ETL. For the

most part, each of those mappings was translated into an ETL rule,

and calls to mape (e)were translated into e.equivalent() calls in ETL.
The e.equivalent() built-in operation retrieves the SQL subgraph

produced from the OCL e subtree, allowing the different SQL sub-

trees to be linked together. The OCL2PSQL case did not require

any manual rule scheduling or the use of greedy/lazy rules: the

automated rule scheduling done by ETL based on source element

types and guards was sufficient.

ETL allows for breaking up the transformation across several

modules. This made it relatively easy to iteratively implement the

various stages in OCL2PSQL and test out how it behaved for the

various challenges. Listing 1 shows the main script of the ETL trans-

formation: it is composed of a number of import statements that

bring in the rules needed for each stage, and a post rule which

places the one PlainSelect without a container into a Select-

Statement element as mandated by the SQL metamodel.

Some of the OCL2PSQL mappings had to produce significantly

large SQL subtrees: to keep the code concise, a library of EOL op-

erations (utilities.eol) was created and reused from the ETL

rules. This library largely contained a set of functions for simple cre-

ation of SQL model elements, an implementation of the OCL2PSQL

SVarse (e) and FVars(e) functions, and several other miscellaneous

functions. As a simple example, Listing 2 shows the code needed to

transform OCL integer literals to the target SQL metamodel.

The ETL rules are for the most part a direct one-to-one transla-

tion from the descriptions at the end of the OCL2PSQL case, except

for two changes.

Listing 1: Main ETL script
1 import 's0_literals.etl';
2 import 's1_equals_and.etl';
3 import 's2_allInstances.etl';
4 import 's3_size.etl';
5 import 's4_collect_variable.etl';
6 import 's5_attributes.etl';
7 import 's6_associationEnds.etl';
8 import 's7_exists.etl';
9 import 's8_existsWithFree.etl';

10

11 post {
12 var firstRootSelect = SQL!PlainSelect.all.selectOne(ps|ps.

eContainer.isUndefined());

13

14 var stmt = new SQL!SelectStatement;

15 stmt.selectBody = firstRootSelect;

16 }

Listing 2: Excerpt of ETL for stage 0 (integer literals)
1 import 'utilities.eol';
2

3 /∗
4 ∗ All these boil down to:
5 ∗
6 ∗ mape(l) =
7 ∗ SELECT l as res, 1 as val
8 ∗/
9

10 rule IntLiteral
11 transform e:OCL!IntegerLiteralExp

12 to ps:SQL!PlainSelect {

13 ps.selItems.add(longSelectItem('res', e.integerValue.asLong()));

14 ps.selItems.add(longSelectItem('val', 1l));

15 }

The first change was considering one special case listed in the

original OCL2PSQL paper [2] but not in the case paper. The map-

ping of collect and exists in the original OCL2PSQL paper covered

the case when v < FVars(b), but this mapping had been omitted

from the OCL2PSQL case description. It turned out that this special

case was needed for some of the queries, e.g. challenge 0 in stage 4

(Car.allInstances()−>collect(c|5)).

The second change was due to an unexpected interaction be-

tween the recursive approach used to define OCL2PSQL, the def-

inition of SubSelect.selectBody as a containment reference in the

SQL metamodel, and how the ETL e.equivalent() operation works.

ETL will only apply a certain rule once to each matching source

model element, and from them on e.equivalent() will always return

the same counterpart in the target model (e.g. the exact same ob-

ject). This resulted in some SQL queries “losing” the body of their

SubSelect objects to other subtrees of the SQL model, as they also

needed the mapping for that part of the OCL expression.

2
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Listing 3: Fix for “subtree stealing” in ETL
1 operation copyIfContained(value) {

2 var emfTool = new Native(

3 "org.eclipse.epsilon.emc.emf.tools.EmfTool");

4 if (value.eContainer.isDefined()) {
5 return emfTool.ecoreUtil.copy(value);

6 }

7 return value;

8 }

For instance, consider the final challenge:

Car.allInstances()−>exists(c|c.owners−>exists(p|p.name = 'Peter'))

In this query, the SQL mapping of c.owners−>exists(...) and the

SQLmapping of p.name both require using themapping of c.owners

as a subquery. ETL successfully maps c.owners to SQL, but EMFwill

not allow a single model element to be contained from more than

one place. Since the mapping of c.owners−>exists(...) will complete

last, it will effectively “steal” the subquery representing c.owners

from the mapping of p.name.

The fix for this issue turned out to be simple, as shown in Listing 3.

All uses of the e.equivalent() operation were wrapped into a new

EOL operation: the operation tested if this “stealing” was about

to take place (i.e. if the PlainSelect was already contained in

another SubSelect), and if so it performed a deep cloning of the

SQL subtree.

A better fix (which unfortunately would have required a rewrit-

ing of the input files for this case) would be to change the SQL

metamodel so that SubSelect.selectBody is no longer a containment

reference, and the same PlainSelect can be reused from multiple

SubSelect model elements.

Even further, this suggests that the OCL2PSQL mapping really

produces a SQL expression graph (where some subexpressions are

reused) rather than a SQL abstract syntax tree. Instead of running

the same subquery from several places, it may be advisable to

redefine OCL2PSQL so it produces a sequence of SQL queries rather

than a single large SQL query: it would run these reused subqueries

first, and then provide their results to the higher-level queries.

Otherwise, there may be a risk that the SQL query could grow

exponentially if sufficiently large subqueries have to be duplicated

across several locations.

Overall, the transformation required writing 14 rules across 528

lines of ETL code, with a support library of EOL operations that

was 212 lines long. These line counts included whitespace and

comments.

4 MODEL-TO-TEXT TRANSFORMATION TO
SQL WITH EGL

The reference solution included a model-to-text transformation

that produced the SQL query to be run in MySQL from the SQL

model. During the development of this solution, it was found that

the generated SQL was difficult to read in the presence of multiple

levels of subqueries, as it was entirely on one line.

In order to improve the readability of the SQL queries and help

with the debugging, an alterntive implementation was written in 96

lines of EGL. The EGL template traverses the SQLmodel recursively

from the root SelectStatement, breaking up SELECT statements,

CASE expressions, joins, and subqueries across multiple lines.

Listing 4: Excerpt of EGL to generate SQL query text
1 [%= SelectStatement.all.first.generate() %][%

2

3 @template
4 operation SelectStatement generate() { %]

5 [%=self.selectBody.generate()%];
6 [% }

7

8 @template
9 operation PlainSelect generate() { %]

10 SELECT

11 [% for (si in self.selItems) { %]

12 [%=si.generate() + (hasMore ? "," : "")%]

13 [% }

14 if (self.fromItem.isDefined()) { %]

15 FROM [%=self.fromItem.generate() %]

16 [% }

17 for (join in self.joins) {%]
18 [%=join.generate()%]

19 [% }

20 if (self.whereExp.isDefined()) { %]
21 WHERE [%=self.whereExp.generate() %]
22 [% }

23 if (self.groupBy.isDefined()) { %]
24 [%= self.groupBy.generate() %]
25 [%

26 }

Listing 4 shows an excerpt of the EGL script: the first line is the

entry point of the entire script, kicking off the recursive descent of

the SQL model from the SelectStatement. The EGL script makes

heavy use of template operations, which allow EGL templates in

their body and return strings which can be used within expressions

(e.g. for concatenaing separators, as in line 12).

The script also uses some of the built-in Epsilon variables: has-
More is a built-in Epsilon variable available in loops which is true

if and only if there are more values after the current one.

Listing 5: SQL-specific LanguageFormatter used to indent
the SQL query text

1 private static class SQLFormatter extends LanguageFormatter {

2 private static final String increasePattern = "\\(\\s∗$";

3 private static final String decreasePattern = "^\\)";

4

5 public SQLFormatter() {

6 super(Pattern.compile(increasePattern, Pattern.MULTILINE),

7 Pattern.compile(decreasePattern, Pattern.MULTILINE));

8 }

9 }

3
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Listing 6: SQL query for challenge 0 in stage 1, as generated
by EGL

1 SELECT
2 TEMP_left.res = TEMP_right.res AS res,

3 1 AS val

4 FROM (

5 SELECT
6 2 AS res,

7 1 AS val

8 ) AS TEMP_left

9 JOIN (

10 SELECT
11 3 AS res,

12 1 AS val

13 ) AS TEMP_right;

One useful feature in EGL is its ability to integrate formatters that
postprocess the generated text. In particular, the EGL Language-

Formatter was customised for SQL (as shown in Listing 5)to auto-

matically indent the lines of the SQL script to improve readability,

while keeping the EGL script as simple as possible. This class only

requires the regular expressions that should increase and decrease

the indentation level after a match. Using this script, queries are

generated in the more readable form shown in Listing 6.

5 PRELIMINARY RESULTS
After implementing the ETL model-to-model transformation and

the EGL model-to-text transformation, Java code to encapsulate

these transformations and integrate them with the TTC benchmark

framework was added. The transformations passed all correctness

cases for all scenarios across all stages and challenges.

In terms of execution time, the transformations were run in

a Lenovo X1 laptop with an i7-6600U CPU running at 2.60GHz

with 16GiB of physical RAM, running Ubuntu Linux 20.04.2 LTS

with Linux 5.4.0-74-generic and the Oracle JDK 11.0.8. The default

Java memory allocation settings were used (no -Xmx or other JVM

options were given). The Docker image provided by the OCL2PSQL

case authors was used to run MySQL, using Docker Engine 20.10.7.

The execution and test times are shown in Figure 1. It must be

noted that the execution times only cover the ETL model-to-model

transformation: the testing times include the EGL model-to-text

transformation and the execution of the SQL queries in MySQL.

This is the same approach followed by the reference solution.

In general, it can be seen that the transformation generally com-

pletes within 1 second, and testing times are within 0.5 seconds.

More specifically, transformation times ranged between 0.83s and

1.06s, with a median time of 0.93s. Testing times ranged between

0.33s and 0.44s, with a median time of 0.36s.
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