
An NMF Solution to the TTC2021 Incremental Recompilation of
Laboratory Workflows Case

Georg Hinkel

georg.hinkel@tecan.com

Tecan Software Competence Center GmbH

Wiesbaden, Germany

ABSTRACT

This paper presents a solution to the Incremental Recompilation

Laboratory Workflows Case at the TTC 2021 using the .NET Model-

ing Framework (NMF). This solution is able to derive an incremental

change propagation almost entirely in an implicit manner.

CCS CONCEPTS

• Software and its engineering → Object oriented frame-

works; Specialized application languages; API languages.

KEYWORDS

incremental, model-driven, transformation

1 INTRODUCTION

The transformation of high-level process models to low-level jobs

actually executed on machines is a common problem not only in

laboratory automation but also in other domains such as smart

production. In these domains, it is desirable to adapt an executed

process in case of errors or at least avoid wasting resources if it is

clear that the complete workflow cannot be performed completely.

Because there are typically a lot of things that could go wrong, it is

desirable to design a transformation system in such a way that an

incremental change propagation can be inferred, i.e. does not have

to be specified by the developer.

To assess to what degree current model transformation tools are

able to infer an incremental change propagation in such scenarios,

the Transformation Tool Contest
1
2021 hosts a case for incremental

recompilation of laboratory automation workflows. This paper

presents a solution to this case using the .NETModeling Framework

(NMF, [3]).

NMF is a framework built for support of model-driven engineer-

ing, incremental model analyses and incremental model transforma-

tions. In particular, NMF Expressions [6] is an incrementalization

system able to incrementalize arbitrary function expressions and

NMF Synchronizations [2, 4] is an incremental model transforma-

tion approach. Using both tools in combination, it is possible to

solve the incremental laboratory workflows case in a very declar-

ative manner such that the required change propagations can be

derived mostly implicitly.

The remainder of this paper is structured as follows: Section 2

gives a brief overview how NMF Expressions and NMF Synchro-

nizations work. Section 3 explains the actual solution. Section 4

evaluates the solution against the reference solution.

1
https://www.transformation-tool-contest.eu

2 NMF EXPRESSIONS AND NMF

SYNCHRONIZATIONS

NMF Expressions [6] is an incrementalization system integrated

into the C# language. That is, it takes expressions of functions and

automatically and implicitly derives an incremental change propa-

gation algorithm. This works by setting up a dynamic dependency

graph that keeps track of the models state and adapt when nec-

essary. The incrementalization system is extensible and supports

large parts of the Standard Query Operators (SQO
2
).

NMF Synchronizations is a model synchronization approach

based on the algebraic theory of synchronization blocks. Synchro-

nization blocks are a formal tool to run model transformations

in an incremental (and bidirectional) way [4]. They combine a

slightly modified notion of lenses [1] with incrementalization sys-

tems. Model properties and methods are considered morphisms

between objects of a category that are set-theoretic products of a

type (a set of instances) and a global state space Ω.
A (well-behaved) in-model lens 𝑙 : 𝐴 ↩→ 𝐵 between types 𝐴 and

𝐵 consists of a side-effect free Getmorphism 𝑙 ↗∈ 𝑀𝑜𝑟 (𝐴, 𝐵) (that
does not change the global state) and a morphism 𝑙 ↘∈ 𝑀𝑜𝑟 (𝐴 ×
𝐵,𝐴) called the Put function that satisfy the following conditions

for all 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵 and 𝜔 ∈ Ω:

𝑙 ↘ (𝑎, 𝑙 ↗ (𝑎)) = (𝑎,𝜔)
𝑙 ↗ (𝑙 ↘ (𝑎, 𝑏, 𝜔)) = (𝑏, �̃�) for some �̃� ∈ Ω.

The first condition is a direct translation of the original PutGet

law. Meanwhile, the second line is a bit weaker than the original

GetPut because the global state may have changed. In particular,

we allow the Put function to change the global state.

A (single-valued) synchronization block 𝑺 is an octuple (𝐴, 𝐵,𝐶,
𝐷,Φ𝐴−𝐶 ,Φ𝐵−𝐷 , 𝑓 , 𝑔) that declares a synchronization action given

a pair (𝑎, 𝑐) ∈ Φ𝐴−𝐶 : 𝐴 � 𝐶 of corresponding elements in a base

isomorphism Φ𝐴−𝐶 . For each such a tuple in states (𝜔𝐿, 𝜔𝑅), the
synchronization block specifies that the elements (𝑓 (𝑎,𝜔𝐿), 𝑔 ↗
(𝑏, 𝜔𝑅)) ∈ 𝐵 × 𝐷 gained by the lenses 𝑓 and 𝑔 are isomorphic with

regard to Φ𝐵−𝐷 .

𝐴 𝐶

𝐵 𝐷

Φ𝐴−𝐶

𝑓 𝑔

Φ𝐵−𝐷

Figure 1: Schematic overview of unidirectional synchroniza-

tion blocks

2
http://msdn.microsoft.com/en-us/library/bb394939.aspx; SQO is a set of language-

independent standard APIs for queries, specifically defined for the .NET platform.

https://www.transformation-tool-contest.eu
http://msdn.microsoft.com/en-us/library/bb394939.aspx

Georg Hinkel

A schematic overview of a synchronization block is depicted in

Figure 1. The usage of lenses allows these declarations to be en-

forced automatically and in both directions, if required. The engine

computes the value that the right selector should have and enforces

it using the Put operation. Similarly, a multi-valued synchroniza-

tion block is a synchronization block where the lenses 𝑓 and 𝑔 are

typed with collections of 𝐵 and 𝐷 , for example 𝑓 : 𝐴 ↩→ 𝐵∗ and
𝑔 : 𝐶 ↩→ 𝐷∗ where stars denote Kleene closures.

Synchronization blocks have been implemented inNMF Synchro-

nizations, an internal DSL hosted by C# [2, 4]. For the incremen-

talization, it uses the extensible incrementalization system NMF

Expressions. This DSL is able to lift the specification of a model

transformation/synchronization in three orthogonal dimensions:

• Direction: A client may choose between transformation

from left to right, right to left or in check-only mode

• ChangePropagation:A clientmay choosewhether changes

to the input model should be propagated to the output

model, also vice versa or not at all

• Synchronization:A client may execute the transformation

in synchronization mode between a left and a right model.

In that case, the engine finds differences between themodels

and handles them according to the given strategy (only add

missing elements to either side, also delete superfluous

elements on the other or full duplex synchronization)

This flexibility makes it possible to reuse the specification of a

transformation in a broad range of different use cases. Furthermore,

the fact that NMF Synchronizations is an internal language means

that a wide range of advantages from mainstream languages, most

notably modularity and tool support, can be inherited [5].

3 SOLUTION

3.1 Assignments of plates, columns and wells

As a first step, we need to group the samples to process into plates

and columns that can be pipetted at the same time. This is done us-

ing the Chunk operation recently built into NMF. This comes in two

versions, Chunk and ChunkIndexed where the latter also keeps the

original index in the original collection. The code for calculating the

assignments of samples to plates, columns and tubes is depicted in

Listing 1. This listing shows how to register a collection of samples

with a synchronization context. That is, because the assignment of

plates is needed in many places throughout the synchronization,

we put it as context.

The input type IEnumerable<ISample> used in line 1 of Listing

1 denotes an incrementalizable collection of samples. NMF essen-

tially implements the Standard Query Operators of C# and a few

more operators on top of this interface in order to derive an incre-

mental change propagation for a given query. That is, the system

allows developers to obtain incremental updates of the results upon

changes of the input models, such as adding a sample.

Lines 3–5 in Listing 1 calculate columns as chunks of samples.

These columns are then chunked into microplates. Line 6 forces

the incrementalization of this collection. The idea of this order as

opposed to chunking the samples into plates and then further into

columns is to allow NMF to rebalance samples between columns

and then rebalance columns between plates. However, we did not

specify a balancing strategy and thus, NMF will not try to rebalance

1 public void InitializeContext(IEnumerableExpression <ISample >
samples , ISynchronizationContext context) {

2 context.Data.Add(_platesKey , samples
3 .ChunkIndexed(8, (samples , column) => new ProcessColumn(

column ,
4 samples.Select(tuple => new ProcessWell(tuple

.Item2 % 96, tuple.Item1))))
5 .Chunk(12, (columns , plateIndex) => new ProcessPlate($"

Plate{plateIndex +1:00}", columns))
6 .AsNotifiable ());
7 context.Data.Add(_tubesKey , samples
8 .ChunkIndexed(16, (samples , tubeIndex) => new Tubes($"Tube

{tubeIndex +1:00}",
9 samples.Select(tuple => new ProcessWell(tuple

.Item2 % 16, tuple.Item1))))
10 .AsNotifiable ());
11 }

Listing 1: Setting up the mapping of samples to plates and

wells

1 public class JobRequestToJobCollection : SynchronizationRule <
IJobRequest , IJobCollection > {

2 public override void DeclareSynchronization () {
3 SynchronizeManyLeftToRightOnly(SyncRule <ReagentToTrough >(),
4 request => request.Assay.Reagents , jobCollection =>

jobCollection.Labware.OfType <ILabware , Trough >());
5 SynchronizeManyLeftToRightOnly(SyncRule <

ProcessPlateToMicroplate >(),
6 (request , context) => GetPlates(context),
7 (jobCollection ,_) => jobCollection.Labware.OfType <ILabware ,

Microplate >());
8 SynchronizeManyLeftToRightOnly(SyncRule <SamplesToTubeRunner

>(),
9 (request , context) => GetTubes(context),
10 (jobCollection ,_) => jobCollection.Labware.OfType <ILabware ,

TubeRunner >());
11 SynchronizeManyLeftToRightOnly(SyncRule <

ProtocolStepToJobsRule >(),
12 (request , _) => request.Assay.Steps ,
13 (jobCollection , context) => new CollectionOfJobCollections(

jobCollection , context));
14 }
15 }

Listing 2: The entry point synchronization rule

the chunks. Similar, lines 8–9 calculate the collection of tube runners

from different chunks of the input samples.

3.2 The model synchronization

The actual model synchronization is split into several synchroniza-

tion blocks that act as isomorphisms. Each synchronization rule

defines a list of synchronization blocks that define what data should

be synchronized. The entry point synchronization rule, the one

synchronizing an overall high-level job request with a low-level job

collection, is depicted in Listing 2. In this listing, lines 3–4 denote

that the reagents are mapped to troughs and lines 5–10 denote that

that tube runners should be created to host the samples as well

as microplates for processing. For the tubes and the microplates,

we consume a second parameter in the lens to access the plate

collections stored in the context (cf. Listing 1).

Lastly in lines 11-13 of Listing 2, we define that the steps of the

requested assay should be synchronized with the job collections in

the low-level model. For this, we use a custom collection implemen-

tation that essentially groups the low-level jobs of the resulting job

collection by name. This needs access to the transformation con-

text as we will store information such as the affected samples of a

job in there. The four calls to SynchronizeManyLeftToRightOnly

An NMF Solution to the TTC2021 Incremental Recompilation of Laboratory Workflows Case

1 public class AddReagentToJobsRule : SynchronizationRule <AddReagent
, JobsOfProtocolStep > {

2 public override void DeclareSynchronization () {
3 MarkInstantiatingFor(SyncRule <ProtocolStepToJobsRule >());
4 SynchronizeManyLeftToRightOnly(
5 SyncRule <AddReagentLiquidTransferToLiquidTransfer >(),
6 (step , context) => GetPlates(context)
7 .SelectMany(p => p.Columns , (plate , column) => new

AddReagentLiquidTransfer(column , plate , step))
8 .Where(transfer => transfer.Column.AnyValidSample.Value),
9 (jobsOfStep , _) => jobsOfStep.Jobs.OfType <IJob ,

LiquidTransferJob >());
10 }
11 }

Listing 3: Synchronizing the jobs for an AddReagent

protocol step

1 private static ObservingFunc <ProcessColumn , bool >
_anyNonErrorSample = new ObservingFunc <ProcessColumn , bool >(
c => c.AllSamples.Any(s => s.State != SampleState.Error));

2 ...
3 AnyValidSample = _anyNonErrorSample.Observe(this);

Listing 4: Calculating whether a column has any sample that

is not in the error state.

basically define collection-valued unidirectional synchronization

blocks that are only enforced from the left to the right.

3.3 Synchronization of AddReagent

The actual high-level process steps are translated using separate

synchronization rules. That is, we synchronize a protocol step with

the jobs implementing this protocol step. The approach to transform

the other types of high-level jobs is conceptually similar, although

the different complexity of the job types leads to a different com-

plexity of the synchronization rules required. For AddReagent, the

synchronization rule for this synchronization is depicted in Listing

3.

In this listing, line 3 marks the synchronization rule as instan-

tiating for ProtocolStepToJobsRule, which means that the syn-

chronization rule is used when the ProtocolStepToJobsRule is

executed with an AddReagent protocol step. Lines 4–9 denote the

synchronization block that computes the elements from which to

create the jobs, using a dedicated class to represent the request for

a liquid transfer. The query calculates all columns of all plates that

have at least any valid (i.e., not failed) sample.

Because the latter needs to be calculated incrementally for each

ProcessColumn, the calculation (and its incrementalization) is sep-

arated into a static function (see Listing 4).

The reason to separate the logic into an ObservingFunc instance
here is that the incrementalization of a method in NMF involves

some reflection and takes a bit of time while applying it to a par-

ticular element is rather cheap. Using a static instance essentially

caches the incrementalization and applies it to multiple instances.

This is also the reason that, although supported by NMF, nested

queries are currently rather slow and hence we refrain from using

the C# query syntax in the mappings such as Listing 3.

The child synchronization rule AddReagentLiquidTransferTo-
LiquidTransfer then defines how the instances of this intermedi-

ate class are transformed into a low-level job as depicted in Listing

5. Line 3 defines that the source of the liquid transfer should be

1 public class AddReagentLiquidTransferToLiquidTransfer :
SynchronizationRule <AddReagentLiquidTransfer ,
LiquidTransferJob > {

2 public override void DeclareSynchronization () {
3 SynchronizeLeftToRightOnly(SyncRule <ReagentToTrough >(), step

=> step.AddReagent.Reagent , liquidTransfer =>
liquidTransfer.Source as Trough);

4 SynchronizeLeftToRightOnly(SyncRule <ProcessPlateToMicroplate
>(), step => step.Plate , liquidTransfer => liquidTransfer
.Target as Microplate);

5 SynchronizeManyLeftToRightOnly(SyncRule <
AddReagentTipToTipTransfer >(),

6 step => step.Column.Samples
7 .Where(s => s.Sample.State != SampleState.Error)
8 .Select(s => new AddReagentTip(step , s)),
9 liquidTransfer => new TipCollection(liquidTransfer.Tips))

;
10 SynchronizeManyLeftToRightOnly(
11 (step , _) => step.Column.AllSamples ,
12 (liquidTransfer , context) => GetAffectedSamples(context ,

liquidTransfer));
13 }
14 }

Listing 5: The synchronization of add reagent elements to

actual LiqidTransferJob elements.

1 public class AddReagentTipToTipTransfer : SynchronizationRule <
AddReagentTip , ITipLiquidTransfer > {

2 public override void DeclareSynchronization () {
3 SynchronizeLeftToRightOnly(well => well.AddReagent.Volume ,

transfer => transfer.Volume);
4 SynchronizeLeftToRightOnly(well => well.TargetWell.Well ,

transfer => transfer.TargetCavityIndex);
5 SynchronizeRightToLeftOnly(well => IsSampleFailed(well.

TargetWell.Sample), transfer => transfer.Status ==
JobStatus.Failed);

6 }
7 }

Listing 6: Synchronization rule AddReagentTipToTipTransfer

synchronized with the trough created for the reagent. Line 4 speci-

fies that the reagent should be pipetted into the microplate created

for the processing requst. In lines 5–9, the synchronization block

denotes the which tips exactly need to be created. Here, we again

use an intermediate class and a custom collection in line 9 in order

to control that a tip liquid transfer is only removed when it is still

planned. Lines 10–12 specify that the samples created for this liquid

transfer are stored inside the transformation context.

The synchronization rule AddReagentTipToTipTransfer that
specifies the transformation of the tip liquid transfers is depicted in

Listing 6. Lines 3–4 synchronize the volumes and the target cavity

(the source cavity is always 0 for a trough).

The last synchronization block in line 5 denotes that the infor-

mation whether the status of the tip transfer is failed should be

synchronized back to the high-level job request model.

3.4 Synchronization of DistributeSample

The synchronization of DistributeSample elements works ex-

actly like the synchronization of AddReagent with one important

exception: While the source labware of an AddReagent is acces-

sible easily via the transformation trace from the reagent, this is

unfortunately not as easy for DistributeSample.

As a reason, the current design of the solution has no direct

connection between a column of a processing microplate and the

tube runner that holds the samples. We first created an approach

Georg Hinkel

1 public abstract class MicroplateProtocolStepRule <TProtocol ,
TJobRule , TJob > : SynchronizationRule <TProtocol ,
JobsOfProtocolStep >

2 where TProtocol : IProtocolStep
3 where TJob : class , IJob
4 where TJobRule : MicroplateJobRule <TProtocol , TJob >
5 {
6 public override void DeclareSynchronization () {
7 MarkInstantiatingFor(SyncRule <ProtocolStepToJobsRule >());
8 SynchronizeManyLeftToRightOnly(
9 SyncRule <TJobRule >(),
10 (step , context) => GetPlates(context)
11 .Where(plate => plate.AnyValidSample.Value)
12 .Select(plate => Tuple.Create(step , plate)),
13 (jobsOfStep , _) => jobsOfStep.Jobs.OfType <IJob , TJob >());
14 }
15 }
16 public abstract class MicroplateJobRule <TProtocol , TJob > :

SynchronizationRule <Tuple <TProtocol , ProcessPlate >, TJob >
17 where TProtocol : IProtocolStep
18 where TJob : IJob
19 {
20 public override void DeclareSynchronization () {
21 SynchronizeManyLeftToRightOnly(
22 (step , _) => step.Item2.AllSamples ,
23 (job , context) => GetAffectedSamples(context , job));
24 SynchronizeRightToLeftOnly(
25 step => AreAllFailed(step.Item2.AllSamples),
26 job => job.State == JobStatus.Failed);
27 SynchronizeLeftToRightOnly(SyncRule <ProcessPlateToMicroplate

>(),
28 tuple => tuple.Item2 , MicroplateProperty);
29 }
30 protected abstract Expression <Func <TJob , IMicroplate >>

MicroplateProperty { get; }
31 }

Listing 8: Template for synchronization of microplate

processing protocol steps

that would calculate the mapping incrementally, but this turned out

to be very resource-intensive both in terms of time and memory.

1 private static Tubes GetSourceTube(ITransformationContext context
, ProcessColumn column) {

2 return GetTubes(context)
3 .AsEnumerable ()
4 .FirstOrDefault(t => t.Samples
5 .AsEnumerable ()
6 .Any(s => column.Samples
7 .AsEnumerable ()
8 .Any(s2 => s.Sample == s2.Sample)));
9 }

Listing 7: Calculating the rube runner for a given column of

a processing plate

The solution now is to break out of the incrementalizationmonad

explicitly and calculate the source tube runner one-time as depicted

in Listing 7: We explicitly call the AsEnumerable method here in

order to instruct the compiler to actually compile the lambda ex-

pressions used to calculate the tube runner. This, however, breaks

the support of rebalancing the chunks making up the columns and

plates.

3.5 Synchronization of Wash and Incubate

The synchronization of Wash steps and Incubate steps is very

similar, because both steps (as many in lab automation) operate on

entire microplates. That is, the protocol step needs to be instantiated

for each microplate that is used for sample processing.

The synchronization rule templates for protocol steps oper-

ating on a single microplate is depicted in Listing 8. There are

two rule templates, one for synchronizing a protocol step with

1 public class WashToJobsRule : MicroplateProtocolStepRule <Wash ,
WashToWashJob , WashJob > {}

2

3 public class WashToWashJob : MicroplateJobRule <Wash , WashJob > {
4 protected override Expression <Func <WashJob , IMicroplate >>

MicroplateProperty => wash => wash.Microplate;
5 public override void DeclareSynchronization () {
6 base.DeclareSynchronization ();
7 SynchronizeManyLeftToRightOnly(
8 tuple => tuple.Item2.Columns.SelectMany(c => c.Samples.

Where(s => s.Sample.State != SampleState.Error).
Select(s => s.Well)),

9 wash => wash.Cavities);
10 }
11 }

Listing 9: Synchronization of Wash steps

a collection of low-level jobs, the other for actually synchroniz-

ing the protocol step in for a given microplate into a given job.

The MicroplateProtocolStepRule class already organizes the

registration of the rule as instantiating and the calls to the child

rule. The template for the latter, MicroplateJobRule, registers af-
fected samples, sets the samples to failed (using another lens called

AreAllFailed in line 25) and synchronizes the target microplate.

Because the target metamodel does not use a shared base class for

jobs operating on microplates, the rule template uses an abstract

property such that instance rules have to specify the property used

to store the microplate.

The instantiation of the rule templates for Wash elements is

depicted in Listing 9. Since the rule to synchronize Wash protocol

steps is sufficiently described using the synchronization template,

we do not need to provide any further specification other than

the type parameters to be used, including a reference to the child

rule. Unfortunately, the C# compiler is not (yet?) able to infer the

type parameters TProtocol and TJob, so they must be specified

explicitly.

For the synchronization of a Wash in conjunction with a spe-

cific processing plate, we need to specify the property holding the

microplate (in line 4) and take care of the speciality of the Wash

that it holds a reference to the cavities that should be washed. For

this, we need to override the declaration of the synchronization

rule. Because we do want to inherit the declaration of the template,

we need to call the base declaration in line 6. Then, we add the

synchronization of the cavities in lines 7–9.

The synchronization of Incubate protocol steps works in the

same way, except that the child rule extends the template with

synchronization blocks for temperature and duration.

3.6 Synchronization of the Next reference

In order for the scheduler to be able to actually schedule the low-

level jobs, the base class for jobs keeps a reference to the next and

previous jobs. That is, the scheduler may only schedule a job if all

previous jobs are completed and in the opposite direction, the job

is a prerequisite for all next jobs.

To aid this situation, we use a utility class called CollectionBinding
that essentially enforces the synchronization of elements between

an incrementalizable source collection (typically a query) and a

target collection that should be adapted. The implementation is

depicted in Listing 10. The query calculates the jobs for which the

set of affected samples intersects the affected samples of the current

An NMF Solution to the TTC2021 Incremental Recompilation of Laboratory Workflows Case

1 CollectionBinding.Create(
2 _nextJobs.Jobs.Where(j => ProtocolSynchronization.

GetAffectedSamples(_context , j).Intersect(samples).Any
()),

3 item.Next)

Listing 10: Binding the next low-level jobs to the jobs of the

next job collection that affect the same samples

job. The return value is an instance of the IDisposable interface,
the typical interface in .NET to dispose objects. In this case, the

binding is stopped when disposed. Because NMF supports bidirec-

tional references, only one direction of the the association has to

be set manually, the other is set automatically by NMF.

Unfortunately, the management of the collection binding cur-

rently has to be done by handling change events of the jobs created

for a job collection manually.

3.7 Starting the synchronization

To run the solution, we create a new context for the model synchro-

nization, initialize the samples and start the model synchronization

in the direction LeftToRight with change propagation in both direc-

tions.

1 _context = new SynchronizationContext(_synchronization ,
2 SynchronizationDirection.LeftToRight ,
3 ChangePropagationMode.TwoWay);
4 _synchronization.InitializeContext(_jobRequest.Samples , _context

);
5 _synchronization.Synchronize(ref _jobRequest , ref _jobCollection ,

_context);

Listing 11: Starting the model synchronization

4 EVALUATION

We see the strongest point of the presented solution in fact that

the change propagation can be inherited mostly from a declarative

specification. As a consequence, essentially all types of changes are

supported, not just the change types executed by the benchmark

framework. This means, that new types of error handling do not

necessarily have an effect on the transformation but are supported

by default. The declarative specification, however, keeps the under-

standability of the solution at a good level. The attendees of the

TTC will judge on the understandability in relation to the reference

solution.

In addition to the inherited change propagation, the solution

also means that no changes to the metamodel code are necessary

and the model representation can be reused independently of the

transformation.

Before we describe the results in terms of performance, remind

that the reference solution is a solution tailoredmanually and explic-

itly for the given types of changes, without any incrementalization

system or alike. Therefore, it is hard to beat it in terms of perfor-

mance and the strengths of the solution in this paper are rather in

the declarativeness and in fact that any type of change is supported.

To evaluate the solution in terms of performance, we have run

the benchmark on a system equipped with a Intel Core i7-8850H

CPU clocked at 2.6Ghz and 32GB RAM, running Windows 10. The

results are discussed in the remainder of this section.

4.1 Scaling Samples

1 2 4 8 16 32
Model

100

200

300

400

500

Ti
m

e
[m

s]

Tool
NMF
Reference

Figure 2: Time for the initial transformation in the scale

samples scenario

The results in terms of time to execute the initial transformation

for the scaling samples scenario are depicted in Figure 2. In this

scenario, the different models represent loads of 8 samples (size 1)

to 256 samples (size 32), applied to a simple ELISA assay model.

The results show that whereas the time for the reference solution

is essentially constant at around 50ms, the initial time for the NMF

solution grows worse than linear, it is more like quadratic.

We did profile the NMF solution. The results show that much of

the time is lost because NMF Synchronizations executes the incre-

mentalization of the queries used to specify the synchronizations

over and over again instead of reusing it. Further, the collection

binding depicted in Listing 10 also requires the system to be incre-

mentalized over and over again. We expect that the performance

gap could be reduced, if the frameworks can be adapted to cache

the incrementalization properly.

1 2 4 8 16 32
Model

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ti
m

e
[m

s]

Tool
NMF
Reference

Figure 3: Results for the average time for an update in the

scale samples scenario

Georg Hinkel

The results for propagating the state of changes of low-level

elements including both what this means in terms of changes to

sample states and also what low-levels become obsolete because of

this are depicted in Figure 3. Meanwhile again, the NMF solution is

slower, it is still within few milliseconds even for the largest models

considered.

4.2 Scaling the Assay

1 2 4 8 16 32
Model

0

500

1000

1500

2000

2500

3000

Ti
m

e
[m

s]

Tool
NMF
Reference

Figure 4: Time for the initial transformation in the scale

assay scenario

In the scale assay scenario, all model sizes use 96 samples, but the

number of protocol steps varies: Whereas the smallest model (size 1)

uses a simplified ELISA assay model with 8 steps, the largest model

uses 32 repetitions (256 protocol steps in total). The execution time

for the initial transformation is depicted in Figure 4. Again, the

runtime of the NMF solution grows quadratic with the size of the

model meanwhile the reference solution stays fast.

1 2 4 8 16 32
Model

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ti
m

e
[m

s] Tool
NMF
Reference

Figure 5: Results for the average time for an update in the

scale assay scenario

The results for updates are depicted in Figure 5. The results

look awkward because as it appears, the change propagation takes

longer for smaller models up to some point. This is because the

benchmark framework uses Pythons subprocess.POpen to spawn

the processes for the model sizes and they can make use of JIT

optimizations of earlier runs. Again, the propagation of the changes

happens in a few milliseconds, both for NMF and the reference

solution, the reference solution being slightly faster.

4.3 New samples

1 2 4 8 16 32
Model

100

200

300

400

500

600

Ti
m

e
[m

s]

Tool
NMF
Reference

Figure 6: Time for the initial transformation in the new sam-

ples scenario

The results for the initial transformation in the new samples

scenario are depicted in Figure 6. Not very surprising, they are very

similar to the scaling samples case because the parameters for the

initial model are exactly the same.

1 2 4 8 16 32
Model

2

4

6

8

10

12

Ti
m

e
[m

s] Tool
NMF
Reference

Figure 7: Results for the average time for an update in the

new samples scenario

An NMF Solution to the TTC2021 Incremental Recompilation of Laboratory Workflows Case

The difference to the scenario that plainly scales the number

of samples is that new samples are introduced during the runtime

of the benchmark. The results for propagating these changes are

depicted in Figure 7. Still, the changes are propagated within a few

milliseconds, but this time this is much slower than in the other

two scenarios, in line with the performance issues in the initial

transformation.

5 CONCLUSION

The solution has shown that in fact, it is possible to derive an incre-

mental change propagation for most of the transformation. Only

for smaller parts such as the synchronization of the next reference,

manual code is necessary, although rather limited. The evalua-

tion shows that meanwhile the performance for actually making

changes almost keeps up with the reference solution, meanwhile

supporting much more types of changes. However, the solution

also shows a performance problem caused by the current inability

of NMF to cache the query incrementalization properly.

REFERENCES

[1] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce,

and Alan Schmitt. 2007. Combinators for Bidirectional Tree Transformations:

A Linguistic Approach to the View-update Problem. ACM Transactions on
Programming Languages and Systems (TOPLAS) 29, 3, Article 17 (May 2007).

https://doi.org/10.1145/1232420.1232424

[2] Georg Hinkel. 2015. Change Propagation in an Internal Model Transformation

Language. In Theory and Practice of Model Transformations: 8th International
Conference, ICMT 2015, Held as Part of STAF 2015, L’Aquila, Italy, July 20-21, 2015.
Proceedings, Dimitris Kolovos and Manuel Wimmer (Eds.). Springer International

Publishing, Cham, 3–17. https://doi.org/10.1007/978-3-319-21155-8_1

[3] Georg Hinkel. 2018. NMF: A Multi-platform Modeling Framework. In Theory and
Practice of Model Transformation, Arend Rensink and Jesús Sánchez Cuadrado

(Eds.). Springer International Publishing, Cham, 184–194.

[4] Georg Hinkel and Erik Burger. 2019. Change propagation and bidirectionality in

internal transformation DSLs. Softw. Syst. Model. 18, 1 (2019), 249–278. https:

//doi.org/10.1007/s10270-017-0617-6

[5] Georg Hinkel, Thomas Goldschmidt, Erik Burger, and Ralf Reussner. 2017. Using

Internal Domain-Specific Languages to Inherit Tool Support and Modularity

for Model Transformations. Software & Systems Modeling (2017), 1–27. https:

//doi.org/10.1007/s10270-017-0578-9

[6] Georg Hinkel, Robert Heinrich, and Ralf Reussner. 2019. An extensible approach

to implicit incremental model analyses. Software & Systems Modeling (29 Jan

2019). https://doi.org/10.1007/s10270-019-00719-y

https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1007/978-3-319-21155-8_1
https://doi.org/10.1007/s10270-017-0617-6
https://doi.org/10.1007/s10270-017-0617-6
https://doi.org/10.1007/s10270-017-0578-9
https://doi.org/10.1007/s10270-017-0578-9
https://doi.org/10.1007/s10270-019-00719-y

	Abstract
	1 Introduction
	2 NMF Expressions and NMF Synchronizations
	3 Solution
	3.1 Assignments of plates, columns and wells
	3.2 The model synchronization
	3.3 Synchronization of AddReagent
	3.4 Synchronization of DistributeSample
	3.5 Synchronization of Wash and Incubate
	3.6 Synchronization of the Next reference
	3.7 Starting the synchronization

	4 Evaluation
	4.1 Scaling Samples
	4.2 Scaling the Assay
	4.3 New samples

	5 Conclusion
	References

