
Families to Persons Case with UML-RSDS

K. Lano,

Dept. of Informatics, King’s College London

S. Kolahdouz-Rahimi,

Dept. of Software Engineering, University of Isfahan, Iran

June 22, 2017

1



Approach

• Specification of bx using OCL

• Forward and reverse transformations derived from bx relation R

• Executable transformation code synthesised from

transformation specifications.

2



Forward transformation

• forward transformation is defined by use case person2family

• inverse is defined by family2person.

• unique keys personId , memberId record 1-1 correspondence

between persons and family members.

3



Metamodels of Families to Persons case

4



Bx relation

Formed of 4 invariants, (I 1):

Family→forAll(fam |
FamilyMember→forAll(m |

m ∈ fam.mother→union(fam.daughters) ⇒
Female→exists(f | f .personId = m.memberId &

f .familyId = fam.id &
f .name = fam.name + ”, ” +m.name)))

(I 2):

Family→forAll(fam |
FamilyMember→forAll(m |

m ∈ fam.father→union(fam.sons) ⇒
Male→exists(f | f .personId = m.memberId &

f .familyId = fam.id &
f .name = fam.name + ”, ” +m.name)))

Express that families model is consistent wrt persons model.

5



(I 3):

Female→forAll(f |
FamilyMember→exists(m | m.memberId = f .personId &

Family→exists(fam | fam.id = f .familyId &
m ∈ fam.mother→union(fam.daughters) &
f .name = fam.name + ”, ” +m.name)))

(I 4):

Male→forAll(f |
FamilyMember→exists(m | m.memberId = f .personId &

Family→exists(fam | fam.id = f .familyId &
m ∈ fam.father→union(fam.sons) &
f .name = fam.name + ”, ” +m.name)))

Express that persons model is consistent wrt families model.

I3, I4 are logical duals of I1, I2.

6



family2person transformation (from I1 and I2):

Family::

m : mother->union(daughters) =>

Female->exists( f | f.personId = m.memberId &

f.familyId = id &

f.name = name + ", " + m.name )

Family::

m : father->union(sons) =>

Male->exists( f | f.personId = m.memberId &

f.familyId = id &

f.name = name + ", " + m.name )

7



person2family:

Logically strengthen (I3) and (I4), enforce that persons are mapped

to parents preferentially:

Female::

FamilyMember->exists( m | m.memberId = personId &

Family->exists( fam | fam.id = familyId &

(fam.mother@pre.size = 0 =>

m : fam.mother & m /: fam.daughters) &

(fam.mother@pre.size > 0 & fam.mother@pre->excludes(m) =>

m : fam.daughters) &

fam.name = StringLib.before(name, ", ") &

m.name = StringLib.after(name, ", ") ) )

8



Male::

FamilyMember->exists( m | m.memberId = personId &

Family->exists( fam | fam.id = familyId &

(fam.father@pre.size = 0 =>

m : fam.father & m /: fam.sons) &

(fam.father@pre.size > 0 & fam.father@pre->excludes(m) =>

m : fam.sons) &

fam.name = StringLib.before(name, ", ") &

m.name = StringLib.after(name, ", ") ) )

9



Change propagation

family model change person model change

New FamilyMember new Male or Female

New empty Family no change

Changed Family :: name changed name for each

person from the family

Changed FamilyMember :: name changed name for

corresponding person

Move a member from father no change

to sons in family

10



person model change family model change

New Person new FamilyMember ,

possibly new Family

Changed Person :: familyId moves corresponding member

to new or modified Family

Changed Person :: name changes name of corresponding

member and possibly of its family

Changed Person :: birthday no change

11



Evaluation

Test Description Execution time

1 Changed Person name, familyId 10ms

2 Changed Person birthday 10ms

3 New Persons (10000) 35s

4 Changed Family name 10ms

5 Changed FamilyMember name 10ms

6 New Family 10ms

7 New FamilyMember (50000) 27s

Invariants (I1) to (I4) are established in each case.

12



Execution time of test7

13



Conclusions

• Solution is concise (30 LOC)

• Declarative, close to logical statement of problem

• Incremental change propagation for attribute, creation, move

updates

• Efficient up to 50,000 model elements.

14


