
Antonio García-Domínguez
15th Transformation Tool Contest
STAF 2023, Leicester, UK

Asymmetric and Directed 
Bidirectional 
Transformation for
Container Orchestrations



Motivation



DevOps and MDE

DevOps gaining importance

● Leite et al.: "continuous 
delivery of new software 
versions, while 
guaranteeing correctness 
and reliability"

● Stack Overflow 2022: 10% 
of respondents said they 
were DevOps specialists

MDE useful for DevOps

● Many tools operate from 
declarative descriptions in 
loose formats (e.g. YAML)

● MDE can help produce 
those - Piedade et al. 
reviewed notations for 
Docker Compose: they 
usually don't cover 100%



Impact of incomplete notations

Models are abstractions!

● Very often, the model will 
not cover 100% of what 
will go into the YAML

● For instance, Piedade 
found that DockStation 
did not cover networks

● Docker evolves quickly - 
we will miss things!

Model and YAML in sync?

● We get the first version of 
the YAML from the model

● DevOps specialists may 
tweak YAMLs in the field

● The model may also 
change over time

● We need to synchronise 
model and custom YAML



Classification as bidirectional tx

Asymmetric

● YAML can contain all the 
information in the model, 
and more

● Different from another 
TTC case (Families to 
Persons), which was 
symmetric (neither side 
contains the other)

Directed

● Changes are only applied 
to one side at a time

● We have either:
○ edited the YAML and need to 

update the model, or
○ edited the model and need to 

update the YAML without 
losing extra info not in model



Transformation details



Source: Containers models

We have containers based on Docker images, with some storage 
volumes. Some containers require that others have started first.



Target: MiniYAML model

Metamodel Utilities

● Case includes Java 
programs to convert 
MiniYAML models to plain 
YAML files, and vice-versa

● Some advanced YAML 
features are not 
supported (e.g. anchors)

Simplification of YAML, with 
maps with string keys and 
scalar/list/map values. Scalars 
are always just strings.



Sample generated 
MiniYAML model
● Version: always 2.4
● One service per container
● Containers can have "image", 

"replicas", "depends_on", and 
"volumes" settings

● Volumes just have names



Reference implementation in Epsilon

● First, created separate ETL scripts for each direction (Containers 
to MiniYAML, and MiniYAML to Containers)

● Next, created a merging transformation for the case where the 
YAML already exists, made up of three Epsilon scripts:

○ Epsilon Comparison Language: script matches elements from new and old YAML, using 
YAML paths (e.g. "services.mariadb.replicas")

○ Epsilon Merging Language: combines information from matched pairs (the new YAML 
takes priority in all the parts that are specified in the Containers model)

○ Epsilon Transformation Language: copies non-matching elements from the new and old 
YAML (e.g. the new YAML has a new container, or the old YAML specified a Docker 
Compose option which is not specified in the Containers model)



Comparison



Research questions

1. How concisely can we specify such a bx with current tools?

2. How well can such a bx correctly preserve customisations in the 
YAML which are outside of the bx, across various types of 
changes in the models?

3. How scalably would such a bx handle larger models, with more 
containers, more volumes, and more custom YAML elements 
outside of the transformation’s control?



Correctness results

Ignore YAML key order Preserve YAML key order

Batch
FWD

Batch
BWD

Incr
FWD

Batch
FWD

Incr
FWD

Reference 
(Epsilon)

✅ ✅ ❌
renCont

✅ ❌ renCont, 
updReplicas

BXtendDSL ✅ ✅ ✅ ✅ ❌ 
updReplicas

NMF ✅ ✅ ✅ ❌ ❌
YAMTL ✅ ✅ ✅ ✅ ❌



Conciseness results (in words)

● Reference:
○ 677 (Java) + 419 (ETL) + 140 (EML) + 59 (EOL) + 70 (ECL) = 1365

● BXtendDSL:
○ 100 (BXtendDSL) + 788 (manually-written Xtend) = 888

● NMF:
○ 1383 (C#)

● YAMTL + EMF-Syncer:
○ 412 (Groovy)



Scalability: batch FWD

● BXtendDSL is fastest

● Then YAMTL and NMF

● Epsilon significantly 
slows down: need to do 
some profiling and fix 
bottlenecks!



● NMF too fast to measure!

● BXtendDSL second, then 
YAMTL

● Epsilon really slowed 
down from 100 
containers: most likely 
due to all-pairs matching 
in ECL (could be replaced 
with EPL)

Scalability: incremental FWD



Scalability: batch BWD

● NMF slower than Epsilon 
until 400 containers (C# 
process startup time?)

● BXtendDSL was fastest

● YAMTL crashed from 300 
containers with a stack 
overflow exception

● Epsilon was slowest, but 
would still complete in a 
reasonable amount of 
time (~3.2s for 500 
containers)



Scalability: incremental BWD

● NMF is now fastest when 
running incrementally 
(C# bootup time no 
longer matters)



Thank you!

a.garcia-dominguez@york.ac.uk


