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ABSTRACT
This paper presents a solution to the Incremental Class to Relational

Case at the TTC 2023 using the .NET Modeling Framework (NMF),

using either plain C# or NMF Synchronizations. This solution is

able to derive an incremental change propagation entirely in an

implicit manner.

CCS CONCEPTS
• Software and its engineering → Object oriented frame-
works; Specialized application languages; API languages.
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1 INTRODUCTION
Models are formally defined abstractions of concepts or physical

objects and as properties of these concepts or objects change, so

does the model. However, if other artifacts have been derived from

the model, it is often important to keep these derived artifacts up

to date. Because recreating these artifacts from scratch takes a

significant amount of time and destroys references to individual

model elements, it is often necessary to propagate the changes.

A common assumption is that implementing this change propa-

gation manually is cumbersome, error-prone and verbose. Model

transformation languages have often claimed to have a superior

support for change propagation [2]. However, few research so far

has been conducted to quantify the savings possible, comparing an

implicit change propagation in a model transformation language

with popular general-purpose programming languages.
1

To assess the amount of code savings possible by implicit change

propagation, the Transformation Tool Contest
2
2023 hosts a case for

incremental transformation of class diagram models to relational

database schema models. This paper presents a solution to this case

using the .NET Modeling Framework (NMF, [5]).

NMF is a framework built for support of model-driven engineer-

ing, incremental model analyses and incremental model transforma-

tions. In particular, NMF Expressions [9] is an incrementalization

system able to incrementalize arbitrary function expressions and

NMF Synchronizations [3, 6] is an incremental model transforma-

tion approach. Using both tools in combination, it is possible to

solve the incremental Class to Relational case in a very declarative

manner such that the required change propagations can be derived

mostly implicitly.

1
For model queries, a comprehensive comparison of general-purpose implementations

and incremental query technology is available [7], but model transformations have

their own characteristics, for example through the common notion of non-trivial traces

[4].

2
https://www.transformation-tool-contest.eu

The remainder of this paper is structured as follows: Section 2

gives a brief overview how NMF Expressions and NMF Synchro-

nizations work. Section 3 explains the actual solutions. Section 4

discusses results from the benchmark framework before Section 5

concludes the paper.

2 NMF EXPRESSIONS AND NMF
SYNCHRONIZATIONS

NMF Expressions [9] is an incrementalization system integrated

into the C# language. That is, it takes expressions of functions and

automatically and implicitly derives an incremental change propa-

gation algorithm. This works by setting up a dynamic dependency

graph that keeps track of the models state and adapt when nec-

essary. The incrementalization system is extensible and supports

large parts of the Standard Query Operators (SQO
3
).

NMF Synchronizations is a model synchronization approach

based on the algebraic theory of synchronization blocks. Synchro-

nization blocks are a formal tool to run model transformations

in an incremental (and bidirectional) way [6]. They combine a

slightly modified notion of lenses [1] with incrementalization sys-

tems. Model properties and methods are considered morphisms

between objects of a category that are set-theoretic products of a

type (a set of instances) and a global state space Ω.
A (well-behaved) in-model lens 𝑙 : 𝐴 ↩→ 𝐵 between types 𝐴 and

𝐵 consists of a side-effect free Getmorphism 𝑙 ↗∈ 𝑀𝑜𝑟 (𝐴, 𝐵) (that
does not change the global state) and a morphism 𝑙 ↘∈ 𝑀𝑜𝑟 (𝐴 ×
𝐵,𝐴) called the Put function that satisfy the following conditions

for all 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵 and 𝜔 ∈ Ω:

𝑙 ↘ (𝑎, 𝑙 ↗ (𝑎)) = (𝑎,𝜔)
𝑙 ↗ (𝑙 ↘ (𝑎, 𝑏, 𝜔)) = (𝑏, �̃�) for some �̃� ∈ Ω.

The first condition is a direct translation of the original PutGet

law. Meanwhile, the second line is a bit weaker than the original

GetPut because the global state may have changed. In particular,

we allow the Put function to change the global state.

A (single-valued) synchronization block 𝑺 is an octuple (𝐴, 𝐵,𝐶,
𝐷,Φ𝐴−𝐶 ,Φ𝐵−𝐷 , 𝑓 , 𝑔) that declares a synchronization action given

a pair (𝑎, 𝑐) ∈ Φ𝐴−𝐶 : 𝐴 � 𝐶 of corresponding elements in a base

isomorphism Φ𝐴−𝐶 . For each such a tuple in states (𝜔𝐿, 𝜔𝑅), the
synchronization block specifies that the elements (𝑓 (𝑎,𝜔𝐿), 𝑔 ↗
(𝑏, 𝜔𝑅)) ∈ 𝐵 × 𝐷 gained by the lenses 𝑓 and 𝑔 are isomorphic with

regard to Φ𝐵−𝐷 .
A schematic overview of a synchronization block is depicted in

Figure 1. The usage of lenses allows these declarations to be en-

forced automatically and in both directions, if required. The engine

3
http://msdn.microsoft.com/en-us/library/bb394939.aspx; SQO is a set of language-

independent standard APIs for queries, specifically defined for the .NET platform.

https://www.transformation-tool-contest.eu
http://msdn.microsoft.com/en-us/library/bb394939.aspx
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Figure 1: Schematic overview of unidirectional synchroniza-
tion blocks
computes the value that the right selector should have and enforces

it using the Put operation. Similarly, a multi-valued synchroniza-

tion block is a synchronization block where the lenses 𝑓 and 𝑔 are

typed with collections of 𝐵 and 𝐷 , for example 𝑓 : 𝐴 ↩→ 𝐵∗ and
𝑔 : 𝐶 ↩→ 𝐷∗ where stars denote Kleene closures.

Synchronization blocks have been implemented inNMF Synchro-

nizations, an internal DSL hosted by C# [3, 6]. For the incremen-

talization, it uses the extensible incrementalization system NMF

Expressions. This DSL is able to lift the specification of a model

transformation/synchronization in three orthogonal dimensions:

• Direction: A client may choose between transformation

from left to right, right to left or in check-only mode

• ChangePropagation:A clientmay choosewhether changes

to the input model should be propagated to the output

model, also vice versa or not at all

• Synchronization:A client may execute the transformation

in synchronization mode between a left and a right model.

In that case, the engine finds differences between themodels

and handles them according to the given strategy (only add

missing elements to either side, also delete superfluous

elements on the other or full duplex synchronization)

This flexibility makes it possible to reuse the specification of a

transformation in a broad range of different use cases. Furthermore,

the fact that NMF Synchronizations is an internal language means

that a wide range of advantages from mainstream languages, most

notably modularity and tool support, can be inherited [8].

Based on this formal notion of synchronization blocks and in-

model lenses, one can prove that model synchronizations built with

well-behaved in-model lenses are correct and hippocratic [6]. That

is, updates of either model can be propagated to the other model

such that the consistency relationships are restored and an update

to an already consistent model does not perform any changes.

3 SOLUTIONS
3.1 Shortcomings of the benchmark framework
For some reason, the metamodels used widely in the ATL Trans-

formation Zoo tend to be ignorant to the fact that the URI of a

metamodel actually should be a URI. Unfortunately, this applies

to both source and target metamodel in the case. NMF translates

URI fields of Ecore metamodels to namespace URIs and is strict

in that these are actually valid URIs. References that do not begin

with a URI are resolved as file references and thus must fail. There-

fore, additional helpers are necessary in order to help NMF resolve

these changes. Further, the fact that new classes have been added

to the NMF changes metamodel is a problem for NMF, because the

(unchanged) metamodel is an integral part of NMF and once NMF

loads a metamodel, it freezes it in order to prevent any changes.

Therefore, it was necessary to force the code generation for the

changed metamodel (NMF normally does not generate code for

metamodels for which code already exists), delete everything that

is already part of NMF and make some code adjustments in the gen-

erated code. For NMF, the added classes are not necessary, because

NMeta does have an explicit class Model to represent a resource.

3.2 Plain C# with dynamic language runtime
Our first solution uses plain C#, using the dynamic language run-

time, plus NMF for model serialization and deserialization. The

dynamic language runtime is a language feature that allows C#

programs to quit the static type system in select places. This is a

pretty advanced feature that helps to implement functionality such

as trace links with few code lines at the expense of losing a lot

of type system benefits that come with a static type system. It is

activated by using the type dynamic, which is essentially the pair

of an object instance and a reference to the programming language

rules that should be used for method resolution. If a variable has

the static type dynamic, the compiler does not resolve any method

calls but emits code that will select the actual method to invoke for

a method call at runtime. This is a rather uncommon language fea-

ture used in situations where a static type system is not particularly

nice to work with.

We found that one of these situations is the implementation of

trace links, because we do not want to keep track of trace links in

multiple hashtables just in order to have correct trace links and

sometimes, the actual type of elements does not even matter. An

example of the latter is that the translation of any root element

should appear as a root element in the result model, regardless of

what type it is. However, the translation of data types into types in

the relational model typically has to be aware that the translation

of a data type is a type and therefore can be used as a type of a

column.

Breaking out of the static type system allows a very convenient

implementation of a trace functionality in C# in just a few lines of

code, as depicted in Listing 3.2.

1 private Dictionary <object , IModelElement > _trace = new Dictionary <
object , IModelElement >();

2 private object TraceOrTransform(object item)
3 {
4 if (! _trace.TryGetValue(item , out var transformed))
5 {
6 transformed = Transform (( dynamic)item);
7 _trace.Add(item , transformed);
8 }
9 return transformed;
10 }

This implementation, however, has the disadvantage that all the

rules to implement the transformation of the actual model elements

have to be done in methods called Transform that take exactly one

argument. Further, if there is a model element that is not covered

by the existing Transform methods, this yields an exception at

runtime.

Model navigation in plain C# is also very convenient since C# has

a sub-language to specify queries. Using this sub-language, queries

can be specified very similar to SQL but are being type-checked by

the compiler and IDE. In particular, the query used to obtain the

multi-valued attributes found in the model is depicted in Listing 1.

1 from cl in classModel.RootElements.OfType <IClass >()
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2 from att in cl.Attr
3 where att.MultiValued
4 select att

Listing 1: Querying the model plain C#

In this case, we are only looking for attributes that are members

of classes that are root elements of the model and ignore attributes

found elsewhere in the hierarchy. However, the API that NMF

generates for models does also include a Descendants operation
to iterate all descending model elements, for example starting from

the model itself (which in NMF is also a model element).

Unfortunately, there is no equivalent trick to implement change

propagation in plain C#. Of course, it would be possible to combine

a manual tracing implementation with NMF Expressions for change

propagation (for instance, to obtain changes for query results), but

this would no longer count reasonable as plain C# and hence, we

refrain from such an implementation
4
. Fortunately for the change

propagation, NMF offers events for changes of all properties such

that manual change propagation can be implemented by a simple

event handler as depicted in Listing 2.

1 var type = new Type
2 {
3 Name = dataType.Name
4 };
5 dataType.NameChanged += (o, e) => type.Name = dataType.Name;

Listing 2: Simple change propagation implementations

The trouble starts when more dependencies are at play such as

when calculating the name of the table created for a multi-valued at-

tribute, which is calculated both from the name of the attribute and

the name of the class that defined the attribute. The implementation

of this change propagation is depicted in Listing 3.

1 var key = new Column { Type = _integerType };
2 var table = new Table
3 {
4 Col =
5 {
6 key ,
7 TraceOrTransform(attribute)
8 }
9 };
10 void OnNameChanged(object? sender , ValueChangedEventArgs? e)
11 {
12 table.Name = attribute.Owner.Name + "_" + attribute.Name;
13 key.Name = attribute.Owner.Name.ToCamelCase () + "Id";
14 }
15 OnNameChanged(null , null);
16 attribute.Owner.NameChanged += OnNameChanged;
17 attribute.OwnerChanged += (o, e) =>
18 {
19 if (e.OldValue != null) (( IClass)e.OldValue).NameChanged -=

OnNameChanged;
20 OnNameChanged(o, e);
21 if (e.NewValue != null) (( IClass)e.NewValue).NameChanged +=

OnNameChanged;
22 };

Listing 3: Slightly more complex change propagation

Here, we define a local method for an update routine and then

register and deregister this update routine dynamically when re-

quired. The problem here is that it is very easy to forget to add or

remove these change handlers here and thus very easy to either

miss important updates or run into a memory leak.

4
In fact, it is already questionable whether using the dynamic language runtime already

counts as not plain C# since it is a rather advanced language feature, but it ships with

the default .NET SDK and is available on all platforms.

Manually implementing change propagation gets a lot worse

when collections start entering the field. Because the changes that

can occur on collections are more diverse, also the code to handle

these changes gets a lot more complex and it becomes even easier

to miss important kinds of changes or run into memory leaks.

The worst situation is when more complex navigation patterns are

used, such as the query for multi-valued attributes that needs to

fetch all classes and from there return all attributes that have the

Multivalued property set to true.

The imperative notion of the plain C# solution, however, makes it

easy to implement rather imperative aspects of the transformation.

For instance, the fact that all primary keys and foreign keys are to

use an integer type that is also the translation of the integer data

type of the input model are quite easy to implement. In the solution,

we statically keep a reference to the integer type in order to use it

everywhere in the model transformation.

3.3 NMF Synchronizations
NMF allows to infer the change propagation rules implicitly and

also has builtin support for traces. As sketched in Section 2, the

idea is to structure a model transformation through isomorphisms

that define pairs of model elements that correspond to each other.

In the case of the classes to relational transformation, there are five

such isomorphisms:

• The entire class model corresponds to the entire relational

model.

• A class corresponds to a table.

• A data type corresponds to a type.

• An attribute corresponds to a column.

• An attribute corresponds to a table, but only if it is multi-

valued.

These isomorphisms are implemented as classes that inherit

from the generic class SynchronizationRule. The next step is to

describe these isomorphisms in terms of other isomorphisms and

the identity of simple types. For the correspondence of the entire

models, this means the following:

• All root elements that are data types should correspond to

the root elements that are types, given the isomorphism of

data types and types.

• All root elements that are classes should correspond to the

root elements that are tables, given the isomorphism of

classes and tables.

• All attributes of classes that are multivalued should corre-

spond to the root elements that are tables, given the iso-

morphism of attributes and tables.

Note that we have two synchronization rules that target all root

elements that are tables. This works, because the synchronization

is only executed in one direction and we use a relaxed synchroniza-

tion mode in which NMF does not enforce that every model has a

counterpart.

From these descriptions, the last is certainly the most interesting.

Its implementation is therefore depicted in Listing 4.

1 SynchronizeManyLeftToRightOnly(SyncRule <AttributeToTable >(),
2 m => from c in m.RootElements.OfType <IClass >()
3 from a in c.Attr
4 where a.MultiValued
5 select a,
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6 rels => rels.RootElements.OfType <IModelElement , ITable >());

Listing 4: Synchronizing multi-valued attributes

Note that the query used in Listing 4 is exactly the same as the

one in Listing 1, but because the file has a dedicated using statement

at the top, the compiler does not resolve the syntax to the .NET

builtin query operators but to the query operators in NMF. For these,

NMF can create a dynamic dependency graph that tracks changes

on the underlying models [9]. The key advantage here is that NMF

Synchronizations is able to infer when the query expression in

Lines 3 to 6 in Listing 4 changes and therefore, the developer does

not have to specify any change propagation implementation.

Because the target isomorphism also can be the identity on any

given type, it is also possible to specify synchronizations of simple

attributes. For comparison, Listing 5 depicts the code necessary

to synchronize the names of tables generated for multi-valued

attributes, the equivalent of Listing 3.

1 SynchronizeLeftToRightOnly(a => a.Owner.Name + "_" + a.Name , t =>
t.Name);

2 SynchronizeLeftToRightOnly(a => a.Owner.Name.ToCamelCase () + "Id",
t => t.Col [0]. Name);

Listing 5: Synchronizing the name of an attribute-table and
its first column

Implementing more or less static references to the integer type is

a bit more difficult in NMF Synchronizations. Because NMF Synchro-

nizations has quite an initialization effort on the synchronization

as dynamic dependency graph templates are constructed for all of

the synchronization blocks and compiled for use without change

propagation, it is not recommended to just add a field to the syn-

chronization class. Further, because unlike Java, nested classes in

C# never have access to an instance of the container class (in Java

terms, nested classes are always static), making it syntactically a

lot more difficult to access these fields. However, this would mean

to give up the thread-safety of NMF Synchronizations, which is

also not what we want (even though not exactly required in this

case). Rather, we use the synchronization context data key/value

container to store variables required during the transformation.

However, this container is unfortunately not type-safe. NMF Syn-

chronizations also allows to use the dynamic language runtime to

hide the string constant, but this turns out to be quite slow.

4 EVALUATION
Creating the plain C# solution started very easy. The initializer

syntax makes it very easy to transform elements into other models

with a minimum of boilerplate code. Rather, the code is a very

concise notion of how to turn objects of one metamodel into objects

of another. The ability of C# to selectively switch off the static type

system also allows support for polymorphism and tracing in a

very concise manner, even if that means that certain type system

guarantees are essentially lost.

This way of implementing a trace through the dynamic lan-

guage runtime has an important downside, though, and that is the

lack of modular extensibility. Whereas model transformation lan-

guages typically allow to extend the set of model transformation

rules through some notion of extensions, this is not possible if the

transformation method is resolved through the dynamic language

runtime as in the plain C# solution. This requirement is quite rare

for toy transformations such as the transformation given here, but

may be important for practical transformations that are typically a

lot more complex.

The trouble for the C# solution starts only when the input models

are changed and these changes are to be propagated to the target

model. If the use case requires that the changes are propagated

instead of rerunning the transformation, syntactic sweets of the

programming language do not really help. Instead, one has to man-

ually register and unregister to change events and handle these

events appropriately. This requires dedicated support for each type

of change, which is cumbersome to implement. In its current form,

the plain C# solution is not complete, meaning that by far not all

changes are actually propagated.

Developing the incremental version using NMF Synchroniza-

tions is a different story. Here, the internal DSL forces the developer

to think in terms of isomorphisms and synchronization blocks, but

then the change propagation comes essentially for free, i.e. the

developer does not have to implement anything.

Consequently, whereas a large proportion of the plain C# so-

lution is responsible for change propagation, the NMF Synchro-

nizations solution does not require any code explicitly for change

propagation, essentially because the transformation only relies on

rather simple model navigation queries that NMF has built-in sup-

port for. In particular, the query that the plain C# solution uses

to find all the multi-valued attributes in order to generate a table

for it, is the same both in the plain C# solution and in the NMF

Synchronizations solution. However, the difference is that whereas

the plain C# solution uses the .NET built-in query operators that

only execute the query in memory, the same query maps in the

NMF Synchronizations solution to NMF query operators that are

capable to obtain a dynamic dependency graph from it that is used

to attach listeners to the notification API of the models in order to

update the query result as the model changes.

Because a model synchronization in NMF Synchronizations is

nothing else than a .NET class, the code required to set up the

transformation is also rather small. Because in principle, NMF Syn-

chronizations can work in both directions, we need to specify the di-

rection when starting the synchronization. Therefore, it is required

to have a separate variable that is then given to the synchroniza-

tion by reference, in C# denoted with the ref keyword. We may

add an API in the future to have dedicated support for one-way

transformation to get rid of this boilerplate.

5 CONCLUSION
There is an ongoing debate on what claims of model transforma-

tion languages are justified and which of them can be backed by

empirical evidence. I see this TTC case a good step in this direc-

tion. In my opinion, the plain C# solution shows that often called

arguments that model transformation languages simplify model

traversal and tracing are problematic as very good support for

these tasks can also be found in general-purpose programming

languages such as C#, which is one of the most used programming

languages in the world. The most important consequence of this is

that because the programming language applies to essentially any

problem one could think of, developers using C# use it practically
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every day, whereas a model transformation language is typically

limited to model transformations and hence, developers need to

switch. However, switching programming languages is what many

developers do not like and thus, model transformation languages

that only provide advantages in these areas have a limited potential

for adoption.

In contrast, the C# plaintext solution also shows that implement-

ing change propagation manually is a different story, as it is easy to

forget changes that need to be propagated. The explicit implemen-

tation of the change propagation through the standard notification

API of the .NET platform is difficult to implement, error-prone and

inhibits the readability of the transformation. In this area, model

transformation languages that can infer change propagation im-

plicitly, such as NMF Synchronizations, have a much clearer value

proposition in comparison to general-purpose programming lan-

guages.
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