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ABSTRACT
This paper presents a solution to the Asymmetric and Directed
Bidirectional Transformation for Container Orchestrations Case
at TTC 2023 using BXtendDSL. BXtendDSL is hybrid language
for bidirectional and incremental model transformations, allowing
transformation developers to specify model transformations on the
declarative and imperative level, allowing for maximum expressive
power to tackle all possible transformation problems.
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1 INTRODUCTION
The transformation case addresses a real-world scenario, which
is relevant e.g. for DevOps engineers. Leite et al. [11] define De-
vOps as a “collaborative and multidisciplinary effort within an
organization to automate continuous delivery of new software ver-
sions, while guaranteeing their correctness and reliability”. The
still rising interest in DevOps lead to the creation of numerous
domain-specific modeling notations, such as notations covering
aspects of microservice architectures [13], DevOps processes [7],
or multi-cloud applications [8].

DevOps relies heavily on tools that help automate deployment.
Typically, those tools operate by reading a declarative description
written in a structured format such as YAML1. These structured
formats conform to loosely defined schemas that often evolve from

1https://yaml.org/
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one version to another. An example is the Docker Compose file
format 2.

The proposed case is based on a scenario inspired by Piedade et
al. [12], that focuses on container orchestration using Docker Com-
pose. To this end, an Ecore [14] model which constitutes the abstract
syntax of a high-level graphical DSL for container orchestration
is transformed into another Ecore model representing the abstract
syntax of a Docker Compose YAML file. Changes of both mod-
els should be propagated back and forth at any time. Furthermore,
changes in the high-level graphical DSL should be propagated to the
YAML file, while retaining any elements that contain information
that cannot be represented by the high-level DSL.

Altogether, this results in a directed, but asymmetrical transfor-
mation case. In this paper, we present our solution to the proposed
transformation case using our hybrid language for bidirectional
and incremental model transformations called BXtendDSL [3, 5, 6].

2 BXTENDDSL
BXtendDSL [3, 5, 6] is a state-based framework for defining and exe-
cuting bidirectional incremental model transformations on demand
that is based on EMF [14] and the programming language Xtend3.
It builds upon BXtend [4], a framework that follows a pragmatic
approach to programming bidirectional transformations, with a spe-
cial emphasis on problems encountered in the practical application
of existing bidirectional transformation languages and tools.

When working with the stand-alone BXtend framework, the
transformation developer needs to specify both transformation
directions separately, resulting in BXtend transformation rules with
a significant portion of repetitive code.

To this end, BXtendDSL adds a declarative layer on top of the BX-
tend framework, which significantly reduces the effort required by
the transformation developer. Figure 1 depicts the layered approach
of our tool: First, the external DSL (BXtendDSL Declarative) is used
to specify correspondences declaratively. Second, the internal DSL
(BXtendDSL Imperative) is employed to add algorithmic details of
the transformation that can not be expressed on the declarative
layer adequately.

The handwritten code and the generated code are combined with
framework code to provide for an executable transformation. The
transformation developer is relieved from writing repetitive routine
parts of the transformation manually using a code generator. The
generated code ensures roundtrip properties for simple parts of the
transformation. Since the declarative DSL usually is not expressive
enough to solve the transformation problem at hand completely,
the generated code must be combined with handwritten imperative

2https://docs.docker.com/compose/compose-file/
3https://eclipse.dev/Xtext/xtend/
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Figure 1: Layered approach used in BXtendDSL

code. Certain language constructs of the declarative DSL define the
interface between the declarative and the imperative parts of the
transformation. From these constructs, hook methods are generated,
the bodies of which must be manually implemented. Hook methods
are used, e.g. for implementing filters or actions to be executed in
response to the deletion or creation of objects, etc.

Incremental change propagation relies on a persistently stored
correspondence model, which allows for m : n correspondences be-
tween source and target model elements. A powerful internal DSL
may be used at the imperative level, to retrieve correspondence
model elements associated with a given element from the source
and target models, respectively. Please note that the transformation
developer does not have to deal with managing correspondences
at the declarative level, rather all the algorithmic details of man-
aging the correspondence model are handled by our framework
automatically.

3 SOLUTION
In this section, we explain the details of our BXtendDSL solution
for the Asymmetric and Directed Bidirectional Transformation for
Container Orchestrations. We will discuss the different layers in
separate subsections.

3.1 Declarative Layer
BXtendDSL code at the declarative layer is used to define trans-
formation rules between elements of source and target models
respectively. Listing 1 depicts the code for the transformation at
the declarative layer.

1 sourcemodel "http :// york.ac.uk/ttc/containers /1.0.0"
2 targetmodel "http :// york.ac.uk/ttc/miniyaml /1.0.0"
3
4 rule Volume2MapEntry
5 src Volume v;
6 trg MapEntry me | filter;
7
8 v.name <--> me.key;
9
10 rule Image2MapEntry
11 src Image img;
12 trg MapEntry me | filter , creation;
13

14 img.image <--> me.value;
15
16 rule VolumeMount2Scalar
17 src VolumeMount vm;
18 trg Scalar sc | filter;
19
20 vm.path vm.volume --> sc.value;
21
22 rule Container2MapEntry
23 src Container c;
24 trg MapEntry me | filter;
25
26 c.name <--> me.key;
27 c.image c.replicas c.dependsOn {c.volumeMounts:

VolumeMount2Scalar} --> me.value {me.value:
VolumeMount2Scalar };

28 c.image c.replicas c.dependsOn <-- me.value;
29
30 rule Composition2Map
31 src Composition c;
32 trg Map m | filter , creation;
33
34 {c.nodes: Image2MapEntry , Container2MapEntry , Volume2MapEntry}

--> m.entries {m.entries: Image2MapEntry , Container2MapEntry
, Volume2MapEntry };

35 c.nodes <-- m.entries {m.entries: Image2MapEntry[img],
Container2MapEntry[c], Volume2MapEntry[v]};

Listing 1: BXtendDSL code at the declarative layer

The code at the declarative layer comprises the transformation
rules for all required model elements. Each rule consists of src
and trg patterns. The trg patterns contain modifiers, such as filter
and creation, which result in the generation of hook methods. The
implementation of the hook methods is described in Section 3.2.
After declaring the src and trg patterns in each rule, the respective
mappings are declared. Mappings may be bidirectional, depicted
by the double arrow <–>, or specified for a certain transformation
direction, for example, forward (–>) or backward (<–). A very simple
bidirectional mapping is depicted in Line 8 of Listing 1: the attribute
name of a Volume is assigned to the attribute key of a MapEntry
and vice versa.

Note that BXtendDSL was intentionally left incomplete when
designed to keep the language as simple and as small as possible.
To this end, we did not incorporate an expression language into
BXtendDSL. Instead, we decided to apply the generation gap pattern
[9] and generate hook methods that are called from the generated
code at the respective steps during the transformation. Bodies for
hook methods are supplied at the imperative layer using the Xtend
programming language.

Consequently, a mapping that has one element on each side of
the arrow may be transformed directly into executable code. Hook
methods are generated for mappings with more than one element
on one side of the arrow symbol. The mapping depicted in line
20 of Listing 1 is used to map the attributes path and volume to
the attribute value of the target pattern. Because the declarative
language does not comprise mechanisms to describe how the two
attributes are mapped to a single attribute on the target side, a hook
method is generated (cf., Lising 2).

The transformation specification on the declarative layer also
comprises mappings of (containment) references between the ele-
ments of the source and target models. Lines 27 and 28 depict the
respective mapping in the forward and backward directions. In the
forward direction (Line 27), the cross reference image, attribute repli-
cas, cross reference dependsOn, and containment reference volumeM-
ounts of the class Container are mapped to the respective MapEntry
in the YAML model. Please note that BXtend rules are executed in

2
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their textual order specified in the BXtendDSL declarative file. That
is, rules Volume2MapEntry, Image2MapEntry, and VolumeMount2Scalar
are executed before rule Container2MapEntry. Thus, we can be sure
that all the elements required for this mapping actually exist and
can be retrieved. The syntax of the mapping specified in line 27
contains curly brackets. This indicates that for this feature, the cor-
respondence/trace model is accessed to obtain the respective model
elements from the source and target models. The specification of
this mapping also results in the generation of a hook method, which
is used to describe all the algorithmic details to realize this mapping
on the imperative layer.

Rule Composition2Map (c.f., Line 30-35 in Listing 1) maps the root
elements of both models. These elements (transitively) contain all
other model elements via references nodes and entries. To realize
the transformation, this rule is executed after all other rules are
executed to ensure that the respective model elements actually
exist when they are assigned to the containment references of the
source and target root elements. In the forward direction, Images,
Containers, and Volumes are assigned to the respective entries of the
targetMap. Again, please note that curly brackets are used to access
the correspondence model and retrieve the already existing target
elements for Images, Containers, and Volumes. A similar mapping is
required for the backward transformation (see Line 35 in Listing 1).

3.2 Imperative Layer
On the imperative layer, the bodies for hook methods must be
supplied. This holds for the specification of modifiers (e.g., filter
or creation), as well as for mappings where further information is
required, which cannot be supplied using the declarative language.

Listing 2: Hook method for mapping attributes path and vol-
ume to Scalar.value

1 override protected valueFrom(String path , Volume volume) {
2 return new Type4value(volume.name + ":" + path)
3 }

Listing 2 shows the imperative code that is required to realize
the mapping vm.path vm.volume –> sc.value, as depicted in Line 20 of
Listing 1. The value attribute of the scalar is a concatenation of the
name of the Volume and the path, separated by ":".

Please note that this rule does not specify the backward direction;
rather, it is addressed in the imperative code for mapping c.nodes <–
m.entries ... from the rule Composition2Map in Listing 1.

Listing 3 depicts the code required on the imperative layer to
realize the rule Image2MapEntry, as specified in Lines 10-14 in Listing
1.

Listing 3: Imperative code for rule Image2MapEntry
1 override protected filterMe(MapEntry me) {
2 me.key == "image"
3 }
4
5 override protected onMeCreation(MapEntry me) {
6 me.key = "image"
7 }
8
9 override protected valueFrom(String image) {
10 new Type4value(MiniyamlFactory.eINSTANCE.createScalar () =>
11 [value = image ])
12 }
13
14 override protected imageFrom(Value value) {

15 return new Type4image ((( value as Scalar ).value))
16 }

The implementation of the modifiers filter and creation is shown
in Lines 1-7 of Listing 3. The modifiers result in the generation of
methods filterMe and onMeCreation, and the transformation devel-
oper only needs to supply a body to realize the desired behavior. In
this case, an Image from the container model is transformed into a
MapEntry of the YAML model. The corresponding MapEntry has a
key attribute with the value "image". The filter is applied when trans-
forming in backward direction and it is used to filter all MapEntry
elements from the target model and only retrieve the ones whose
key attribute contains the value "image".

Methods valueFrom and imageFrom are hook methods that are
generated from the mapping depicted in Line 14 of Listing 1. Note
that in this case, the mapping only contains a single element on
each side of the arrow, but the respective attributes are of different
types. Thus, hook methods are required to specify how these types
are mapped onto each other. In the forward direction (method
valueFrom), the "image" String is transformed into a Scalar, where
the attribute value is assigned to the value attribute of the scalar.
The value of this attribute is returned in the backward direction.

Listing 4: Imperative code for mapping specified in Line 27
of Listing 1

1 override protected valueFrom(Image image , int replicas ,
2 List <Container > dependsOn , List <Scalar > volSc ,
3 Value oldValue) {
4 var entry = yamlFactory.createMap ()
5 if (replicas > 1) {
6 val me = yamlFactory.createMapEntry () =>
7 [key = "replicas"
8 value = yamlFactory.createScalar () =>
9 [value = "" + replicas]
10 ]
11 entry.entries += me
12 }
13 if (image !== null)
14 entry.entries += (elementsToCorr.get(image). getTarget ()
15 .get(0) as SingleElem ). element as MapEntry
16 if (! dependsOn.isEmpty) {
17 val me = createMapEntry("depends_on")
18 val list = me.value as miniyaml.List
19 for (Container c : dependsOn)
20 list.values += yamlFactory.createScalar () =>
21 [s | s.value = c.name]
22 entry.entries += me
23 }
24 if (!volSc.empty) {
25 val me = createMapEntry("volumes")
26 val list = me.value as miniyaml.List
27 for (Scalar s : volSc) {
28 list.values += s
29 }
30 entry.entries += me
31 }
32 ...
33 new Type4value(entry)

Listing 4 depicts the imperative code that is required to realize the
mapping of image, replicas, dependsOn and volumeMounts attributes
and references of a Container to respective MapEntrys in forward
direction. The imperative code contains several conditional blocks
that need to be processed if certain conditions hold, for example,
if the value of the integer attribute replicas is > 1. In this case, a
new MapEntry with appropriate key-value pairs is created and
added to the parent Map. If additional MapEntrys are required for

3
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dependencies and volumes, they are also created using this hook
method. Respective entries are then also added to the map, which
is then returned at the end of the hook method.

4 EVALUATION
The aim of the proposed transformation case is to answer research
questions concerning conciseness (i.e., how much specification ef-
fort is required to solve this case with current bx tools), preservation
of information that cannot be mapped on the other model, and scal-
ability (i.e., how well the proposed solution scales with increasing
model sizes).

To this end, the transformation is classified according to the
evaluation criteria discussed in the following subsections.

4.1 Correctness
The correctness of the transformation may be verified using two
different and supplied comparators. The MiniYAMLComparator
ignores the order of elements in the respective models, whereas
the MiniYAMLExactComparator also considers the ordering of ele-
ments.

MiniYAMLComparator. The BXtendDSL solution passes all sup-
plied tests (forward, backward, incremental forward) for the bench-
marx testsuite using the MiniYAMLComparator; for example, we
achieved 100% correctness in this case.

MiniYAMLExactComparator. For the MiniYAMLExactCompara-
tor, the BXtendDSL solution passes eight out of nine batch forward
tests, seven of eight batch backward tests, and four of five incre-
mental forward tests, which leads to a correctness rate of 86.4%.
The following test cases fail, due to incorrect ordering of elements
in a multi-valued reference: completeModel in both BatchForward and
BatchBackward, as well as updateReplicas in IncrementalForward

4.2 Conciseness
To measure the conciseness of the transformation specification,
nodes in the respective AST/ASG of the languages used should be
counted. To this end, solution developers are required to provide
specific implementations of the AST-counter. In our case, an AST-
counter for the BXtendDSL language and an AST-counter for the
Xtend programming language are required. However, an additional
problem remains. First, BXtend does not provide static libraries;
rather, framework code is generated specifically for each transfor-
mation. That is, the project contains a significant portion of the
generated Xtend and Java code, which must be excluded when the
AST nodes are computed. Furthermore, large parts of the Xtend
code that are used to implement hook methods on the imperative
layer are generated as well. Consequently, the transformation de-
veloper is required to specify only the bodies of the respective
languages. However, an AST-counter works on a valid source code,
that is, an Xtend class that has no compile errors and counts all
nodes present in the class. This would lead to incorrect results be-
cause large parts of the generated code would be considered. From
our understanding, however, conciseness should only take the parts
of the code into account that the transformation developer must
supply to make the transformation work. To this end, we decided
to provide conciseness information using the LOC metrics defined

in [1] and [2]. We further split up the numbers into code required
on the declarative and the imperative layer respectively. Table 1
presents the results.

BXtendDSL Declarative BXtendDSL Imperative
Lines of code 32 202
Number of words 94 686
Number of characters 862 5967

Table 1: Size of the transformation definitions of both solu-
tions

The results clearly indicate that a significant portion of the trans-
formation was specified on the imperative layer. This is due to the
asymmetric nature of the transformation case, which cannot be
handled adequately in the declarative layer of BXtendDSL. How-
ever, the resulting transformation specification is still concise if we
compare it to similar transformation cases such as AST2Dag [10].

4.3 Least Change
Beyond correctness, the transformation should preserve additional
information in the YAML file that cannot be expressed in the Con-
tainersmodel.When executing the transformation in the twomodes
(MiniYAMLComparator, which checks the general correctness, and
MiniYAMLExactComparator, which also considers the order of ele-
ments in the YAML model), we observe that the transformation can
preserve the additional information specified in the YAML file, but
not in the exact order of elements. Test cases specified in class Incre-
mentalForward were considered for this test. While the BXtendDSL
solution achieves 100% accuracy for Mode 2, it passes four out of
five tests for Mode 1, resulting in an accuracy of 80% when the
exact order of the elements matters.

4.4 Scalability
To measure how well the transformation scales to models with
increasing numbers of containers, volumes, and images, different
scalability tests have been executed in the forward and backward
directions, as well as both in batch and incremental situations. We
attempted to compare the results of BXtendDSL to the provided
reference implementation, but unfortunately, the backward mea-
surements failed with errors on our computers. To this end, only
the plots for batch forward and incremental forward transforma-
tions contain data for the reference implementation as well. All
scalability tests were performed on the same computer in isolation
to avoid side effects. A desktop PC with an AMD Ryzen 7 3700x
CPU was used, running at a standard clock of 3.60 GHz, with 32 GB
of DDR4 RAM and Microsoft Windows 11 64-bit as the operating
system. We used Java 13.0.2, Eclipse 4.27.0, and EMF version 2.33.0,
to compile and execute Java code for the scalability test suite. Each
test was repeated five times, and the median measured time was
computed.

For each test, we used the provided class for scalability mea-
surements, which created models of increasing sizes up to 1000
elements. BXtendDSL proves to scale very well with increasing
model sizes, as depicted by the plots for batch forward (c.f., Figure
2), incremental forward (c.f., Figure 3), batch backward (c.f., Figure

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

A BXtendDSL Solution to the TTC2023 Asymmetric and Directed Bidirectional Transformation for Container Orchestrations Case TTC’23, July 20, 2023, Leicester, UK

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

# model elements

tim
e 

in
 s

0

200

400

600

800

200 400 600 800

Reference BXtendDSL

Batch Forward: Reference Implementation and BXtendDSL

# model elements

tim
e 

in
 s

0,01

0,1

1

10

100

60 80 100 200 400 600 800

Reference BXtendDSL

Batch Forward: Reference Implementation and BXtendDSL

Figure 2: Forward batch transformation: Linear/linear scale (left) and log/log scale (right)
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Figure 4: Backward batch transformation: Linear/linear scale (left) and log/log (right)

4), and incremental backward (c.f., Figure 5). Please note that two
plots are given per figure: one with linear scaling of the x and y axes
and the other with logarithmic scaling. The linear plot is meant to
provide a realistic impression for the actual complexity curve of the
BXtendDSL solution compared to the reference implementation.

The logarithmic plots help zoom into finer details for smaller mod-
els (practically invisible in the linear plot), and zoom out for larger
models so even large differences in runtime can still be presented
qualitatively.
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Figure 5: Backward incremental transformation: Linear/linear scale (left) and log/log (right)

5 CONCLUSION
The BXtendDSL solution provided for the asymmetric and directed
bidirectional transformation for the container orchestration case
has proven to be concise, sufficiently correct, and scalable. Because
BXtendDSL allows us to specify details of the transformation on
both declarative and imperative levels, the transformation devel-
oper may choose (almost) freely which programming paradigm is
best suited for the transformation problem at hand. A combina-
tion of both results in high expressive power while simultaneously
maintaining low specification effort at the same time. The trans-
formation case revealed small bugs in the code generation engine,
which was used to generate executable code from declarative spec-
ifications. Thus, minor tweaks of the generated code are required.
These issues have already been addressed, and will be incorporated
into BXtendDSL in the upcoming release.
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