
Incremental MTL vs. GPLs: Class into Relational Database Schema
Sandra Greiner

sandra.greiner@unibe.ch
University of Bern
Bern, Switzerland

Stefan Höppner
stefan.hoeppner@uni-ulm.de

University of Ulm
Ulm, Germany

Frédéric Jouault
Frederic.JOUAULT@eseo.fr

ESEO
Angers, France

Théo Le Calvar
theo.le-calvar@imt-atlantique.fr

IMT Atlantique, LS2N (UMR CNRS
6004)

Nantes, France

Mickael Clavreul
Mickael.CLAVREUL@eseo.fr

ESEO
Angers, France

ABSTRACT
Model transformation languages (MTLs) are domain-specific lan-
guages tailored to express model-to-model transformation pro-
grams. They typically offer higher-level syntactic constructs, such
as rules, and specific features, such as automatic traceability sup-
port, than general-purpose languages (GPLs). Moreover, someMTLs
allow for multiple execution modes, such as incremental or bidi-
rectional, based on a single specification. Many MTLs have been
proposed over the past decades, but GPLs are still widely used to
write model transformations in practice. Previous work has iden-
tified some reasons for this, in the context of the batch execution
mode, such as the fact that modern GPLs are not much more ver-
bose than MTLs. Our working hypothesis is that the situation is
different for other execution modes. Therefore, this transformation
tool contest case calls for incremental solutions implemented using
various MTLs and GPLs, with the purpose of building a data set
consisting of labeled solutions specified in diverse languages. The
overall objective is to leverage this data set to better understand
whether GPLs are up to incremental tasks, or whether MTLs are
significantly more appropriate.

KEYWORDS
Incremental Transformations, Model-Driven Software Engineering,
Model Transformation Languages

ACM Reference Format:
Sandra Greiner, Stefan Höppner, Frédéric Jouault, Théo Le Calvar, and Mick-
ael Clavreul. 2023. Incremental MTL vs. GPLs: Class into Relational Database
Schema. In Proceedings of TTC, STAF (TTC23). ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Within the Model Driven Engineering methodology, model trans-
formation languages (MTLs) are typically seen as the best means

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
TTC23, July,2023, Leicester, UK
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

of expressing model transformations. However, many transforma-
tions are defined in general purpose languages (GPLs), particularly,
in real-world situations, which poses several challenges [7]. One of
the main issues is the lack of understanding the benefits and func-
tionality of MTLs compared to GPLs [5]. This can lead to "hidden"
model transformations that may not be explicitly denoted as such,
and the unawareness that a transformation is performed.

To address this problem, the aim of the Incremental Class2Rela-
tional transformation tool contest case is to compare GPL solutions
specified in heterogeneous languages, such as Python, Java, C#, and
Xtend, with MTL solutions, focusing on their syntactic complex-
ity [8]. For the purpose of comparison, we require submissions to
label their transformation code with the syntactic complexity of
each statement (see Section 3.3) and information on what purpose
the statement serves for in the transformation process. By com-
paring the complexity of these languages, we can guide software
developers in deciding which type of language to use and provide
suggestions for developing transformation-specific language sup-
port in GPLs.

Through the tool case, our goal is to evaluate and compare the
case solutions and work towards a journal paper that examines
the differences between GPLs and MTLs for writing incremental
transformations answering the following research questions:
RQ 1: How is the size of incremental transformations written in

GPLs distributed over different parts of the transformation,
such as the model loading and saving or the transformation
rules, compared to MTLs?

RQ 2: How high is the error rate in GPL transformations compared
to MTL transformations for incremental use-cases?

RQ 3: In which situations are transformation DSLs better than
GPLs for incremental transformations and in which parts of
the development process?

WithRQ1we aim to investigate how well aspects of incremental
transformations are abstracted in dedicated MTLs and how much
‘effort’ it takes to reimplement these abstractions in a general pur-
pose programming language. Literature and language developers
often claim, that using MTLs reduces the amount of errors that are
introduced during development [5, 7]. Using the submissions for
this case and our benchmarking framework (see Section 3.1&4.2,
we aim to provide empirical data for this discussion by answering
RQ2. As explained earlier, the overall goal of our work is to provide
results on the usefulness of MTLs and GPLs for writing incremental
model transformations. RQ3 verbalises this goal in a question that

https://orcid.org/0000-0001-8950-0092
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

TTC23, July,2023, Leicester, UK Greiner et al.

we will try to answer based on the insights gained from evaluating
the solution submissions for our transformation case.

To attract a large number of solution submissions, we propose
to use an incremental variant of the well-known ‘Class2Relational’
transformation [9] as transformation case. We measure the success
of each submitted solution by the facts whether it produces a correct
target model for a given source model, and whether it is properly
labeled.

Different variants of the Class2Relational transformation exist
in literature, such as a transformation of entire Ecore models into
self-defined relational database schema [12], or as part of language
specifications [11] and examples thereof [3]. While these trans-
formations may be beneficial to address real-world scenarios, it is
complex to define them as batch transformation and, thus, even
harder to define proper incremental behavior. To pursue our goal
of attracting a multitude of solutions in diverse languages, we de-
cided to reduce the transformation size and complexity to focus on
concise and key incremental scenarios apparent in the Class2Re-
lational transformation. For the same reason, we do not consider
former cases of bidirectional, incremental transformations [2, 4]
as appropriate because they are trimmed for MTLs and do not ask
for labeling the solution. Furthermore, our case is easy to specify
in one direction and does not have to deal with information loss
which is an additional challenge that bidirectional transformations
are confronted with, on top of propagating changes from a source
to a target model.

The rest of this paper is structured as follows: Sec. 2 and Sec. 3
introduce the transformation case and tasks we would like partici-
pants to solve. In Sec. 4, we describe how we evaluate the submitted
solutions. Lastly, Sec. 5 details how we will value the contributions
and which rewards we propose to give to the participants.

2 TRANSFORMATION CASE
As we aim for many solutions, we propose the Class2Relational
transformation [9] as transformation case similar to the definition
proposed in the ATL zoo [1]. In contrast to the variant of the ATL
zoo, we do not consider the batch execution mode but its behavior
in incremental transformations. Since the scenario is well-known
as a de-facto hello-world example for MTLs, we expect that an
implemented variant of the case exists already in several MTLs.
To provide the adequate variant for this transformation case, this
section introduces the specific class and relational metamodels as
well as the expected transformation behavior.

2.1 Metamodels
Class Metamodel. Figure 1 depicts the source metamodel of the

transformation. It comprises named classifiers, which are either
datatypes or classes. Classes may contain several single- or multi-
valued attributes, which are either typed with a primitive DataType
or a complex type (i.e., of a specific Class). Explicit references do not
exist between classifiers but can be expressed in terms of attributes
of complex types. As such, any Ecore model can be translated into
a simplified representation being an instance of this metamodel.
A corresponding transformation (called Ecore2Class) is available
besides the transformation in the ATL zoo.

NamedElt

name : String

Classifier

DataType Class
Attribute

multiValued : Boolean

owner

*
att

{ordered}

type

Figure 1: Class metamodel.

Named

name : String

Table Column Type
key *

owner *
col {ordered}

type

Figure 2: Relational schema metamodel.

Relational Database Schema Metamodel. Figure 2 depicts the tar-
get metamodel. It consists of several tables that own an ordered list
of typed columns. A column may serve as key for a table. The rela-
tional schema metamodel does not differentiate between foreign
and primary keys. Tables, columns, and types are named elements
and can be identified accordingly.

Notes on Challenges. Some points can be regarded as specific
to the transformation case. Firstly, neither the source or target
metamodels possess a unique root element. Accordingly, the input
and outputmodelsmay comprise several top-level classes and tables,
respectively. Additionally, primary keys are not explicitly present
in the source model or target model but an id column may serve
as such for each table created for a source class.

2.2 Transformation Behavior
The transformation behavior may vary with respect to the exe-
cution mode. We describe the state-of-the-art batch behavior, as
implemented in the ATL zoo, first. Second, we describe the variants
of executing the incremental transformation correctly.

General (Batch) Mappings. In the batch transformation defined
in the ATL zoo, the transformation rules establish the following
mappings:

Incremental MTL vs. GPLs: Class into Relational Database Schema TTC23, July,2023, Leicester, UK

• Class into Table and objectID-Column
• DataType into Type
• single-valued, primitive Attribute into Column
• multi-valued, primitive Attribute into Table, id-Column,
and value-Column

• single-valued, class Attribute into id-Column
• multi-valued, class Attribute into Table, id-Column, and
foreign-Column

Accordingly, for each class a table and a column serving as (im-
plicit) primary key are created. Thus, the objectID-column is a
Column with name ‘objectId’ and of type Integer.

Furthermore, for single-valued attributes, a column is created
whereas for multi-valued attributes, a new table is created. In the
latter case, one column of the new table serves as foreign key of
the class owning the attribute and a second column represents the
value of the attribute. Thus, a Column of the type of the owner and
with name of the owner, followed by ‘id’ (i.e., "a.owner.name +
’_’ + a.name") is created as well as a second column typed and
named as the attribute itself. All columns created for single-valued
attributes are integrated into the table created for the containing
class.

This behavior serves as a baseline for executing the transforma-
tion.
Please note: (1) no dedicated root exists in the transformation;
(2) primary keys are integrated implicitly when creating a table
for a class; and (3) inheritance relationships are not covered in the
transformation scenario as they are not part of the class metamodel.

Incremental Behavior. In the incremental transformation, the
behavior of the transformation can vary with respect to handling
updates to the input model. We assume that, at any point in time of
re-executing the incremental transformation, the input model is a
valid model which does not violate the syntax defined through the
metamodels. Firstly, the typical create, update, and delete changes
may occur at all levels of the input model. For instance, objects, such
as classes and their attributes, can be deleted or added. Additionally,
their structural features can change, for example, a class can be
renamed or the name can be deleted entirely.

Secondly, different behaviors can be supported through the trans-
formation engines and the definitions in the incremental execution
mode. Handling null-values represents one such behavior. Typi-
cally, accessing a null-value may throw a null-pointer exception.
However, for instance, when concatenating a null-value with an
existing String, it may either throw an exception, or it can be tol-
erated. In the latter case, for instance, ATOL transformations [10]
allow strings concatenation and replace the null-reference with
the verbatim String “null”. As such, we consider the handling of
null-values as variants of the incremental transformation. A fast
solution is to ignore null-values and to assume that the input is
correct. A more sophisticated variant will replace null-values by
(default) values. Handling dangling references represents another
example of behavior that results from deleting or adding objects.
Sec. 3.2 presents the entire list of incremental behavior.

3 TASK
The task of the incremental Class2Relational case is to define the
incremental Class2Relational transformation. As we require correct

and labeled transformations as (minimal) solutions, this section
introduces the criteria for successfully passing the transformation
case. It explains how correctness is evaluated, elaborates on the
expected incremental behavior, demonstrates how (manual) labeling
can be accomplished, and finally refers to further quality aspects of
transformations which solutions can report.

3.1 Correctness: Commutativity
As correctness criterion, we enforce commutativity of batch and
incremental transformations. We will consider the incremental
transformation correct if a batch transformation produces the same
result for the same input model as the incremental one.

Consequently, the correctness depends on the behavior of the
batch transformation. As ground truth transformation, we propose
the permissive incremental ATOL Class2Relational transformation1.
The ATOL transformation (engine) is more permissive than the
batch variant defined in the ATL zoo as it tolerates null-values.
While it is more fault-tolerant, the ATOL variant may be considered
not as correct as the transformation of the ATL zoo which does not
allow for null-values.

3.2 Completeness: Incremental Behavior
Variants of the incremental transformation may differ in how they
handle missing or added elements due to incremental updates to the
source model. We will consider a transformation as complete, if it
passes the correctness criteria defined above. If the transformations
fail at any point, we gradually consider it as incomplete bymanually
inspecting the reasons of their failure. The following criteria will
be evaluated.

Null Values. The structural features of objects in the source
model may assume null or default values when their original one
is deleted. When accessing a null-value an incremental transfor-
mation definition can:

(1) fail (due to an null-pointer exception)
(2) ignore the access and continue with the next rule
(3) resolve the problem by replacing the null-value with a de-

fault type

The reference batch solution assumes behavior (3). However, it may
depend on the concrete transformation case and the specific rule
which strategy is optimal in the respective situation. Therefore,
while we consider solutions which discontinue the transformation
(1) as well as silently ignoring the failure (2) as incomplete, we
still provide a reduced score for the solution which continues the
execution (2), ideally with a (log-)message to the user.

Dangling Objects. Due to added objects (i.e., classes, datatypes,
or attributes), references between objects may be missing. Ideally,
the input model should be validated first to avoid such situation,
however, due to human errors this situation may occur.

If only a single object is added without a reference in the target
model as consequence of a missing reference in the source model,
it depends on its kind whether references in the target model are
needed or not. A table and a type can be integrated into the target

1https://github.com/ATL-Research/incremental-class2relational

https://github.com/ATL-Research/incremental-class2relational

TTC23, July,2023, Leicester, UK Greiner et al.

model as root elements of the target model without requiring a
container.

In contrast, a Column requires a table to be present. If a source
Attribute is not contained in a Class, it depends on its kind which
transformation behavior occurs. For a multi-valued attribute, a table
may be created but accessing the owner of the attribute will be
an access of a null-value and will have to be solve as explained in
the previous paragraph on null-values. On the contrary, for single-
valued attributes, only a column is created which should be added
in the table created for its owner. As the link to the owner is missing,
the transformation can assume the following behavior:

(1) do not create the dangling object (roll-back)
(2) ignore the missing link and leave the dangling object
(3) add the object to the first object of the right type
Again, the potential three solutions can be scored in ascending

order. Rolling-back will create a valid target model but misses to
propagate the information added to the source model, in this case
to integrate a new object. The second solution produces an invalid
model but propagates the same information. The third solution
guarantees a valid target model, however, it is possible that the
object is added to the wrong container.

The reference ATOL transformation assumes the second behav-
ior. While the solution may not be ideal, solution (3) would add the
column to a potentially undesired wrong table. We do not consider
a semi-automated alternative of computing all potential containers
and proposing them to the user may not scale in terms of execution
and storage time.

Dangling References. Similar as with dangling objects, due to
deleted objects or solely added references, references may be miss-
ing one end. If one end is deleted while the other end and the
reference remains, the transformation engine can either

(1) remove the link, or
(2) create a new default-object for the missing end

in the target model.
Our reference batch transformation assumes the strategy (2). If

a solution assumes strategy (1), however, we will manually score it
as correct and complete in the same way.

Further Criteria. Our list of solutions to updates and problems
potentially occurring in incremental transformations may not be
exhaustive. Particularly, depending on the transformation engine’s
properties, further automated solutions may be possible which are
not available in ATOL. While we use the ATOL transformation as
reference incremental transformation based onwhich we score solu-
tions, we welcome further reference transformations as part of the
solution submission. We plan to consider those in the prospective
journal extension.

3.3 Syntactic Complexity: Labeling of
Transformations

To compare solutions developed in different languages, we rely
on ‘syntactic complexity’. This size metric measures the amount
of words that are separated either by whitespaces or other delim-
iters used in the languages, e.g. dot(.) and different parentheses
(() []{}) [8]. As it is difficult to offer a tool which computes the

metric generically for any MTL or GPL, we require submissions to
self report the values of this measure for each line of their code. For
comparing solutions, we are interested in how much code is writ-
ten for different transformation aspects. The aspects we consider
relevant for this purpose are:

• Setup, i.e., code required to make the transformation work
• Model Traversal, i.e., traversing the input to find model ele-
ment(s) to transform

• Helper/Expression Outsourcing, i.e., modular code that out-
sources expressions that are used multiple times in a trans-
formation

• Tracing, i.e., explicit code that establishes or resolves trace
links between input and output elements

• Incrementality, i.e., explicit code that manually implements
incrementality functionality

• Transformation, i.e., the code that actually transforms input
model elements to output model elements

For each statement in the transformation code we require sub-
missions to provide the transformation aspect that it implements
as well as the complexity value in form of a comment above the
statement. The ‘labels’ must be provided in the following format:
<CommentDelimiter> TransformationAspect Value. Ideally, each
label must only include one transformation aspect and one complex-
ity value. If a single statement of code implements the functionality
of several aspects, we will expect the complexity value to be split
between these aspects respective to the share of the statement that
implements them. Each label must be reported in a separate line
within the code. Within each solution, the symbols used to com-
ment the complexity labels must be consistent though the entire
submitted project.

Figure 3 depicts an excerpt of a Java implementation of the
Class2Relational case which is labeled as we expect solutions to
be. Line 3 implements setup functionality to create model elements
of the relational metamodel. It contains eight separate words and,
thus, its syntactic complexity value is eight. Consequently, using
the format we propose, it is labeled with 𝑆𝑒𝑡𝑢𝑝 8.

As another example, lines 43-48 (split into multiple lines for read-
ability) implement transformation functionality as well as trace res-
olution. Thus, the syntactic complexity of the statement is given as
𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 12 and 𝑇𝑟𝑎𝑐𝑖𝑛𝑔 16 because 12 words in the state-
ment implement part of the transformation and 16words implement
trace resolution.

In the event that a solution is provided using a non-textual trans-
formation language such as a graphical representation, we expect
authors to count the number of model elements used to design the
transformation and to label these elements with notes using the
same format we propose in this section. This should be provided in
a separate file following the described labeling schema.

3.4 Additional Features: Performance and
Quality

The main criteria that are evaluated automatically for passing the
case are the correctness and thereby indirectly the completeness
of the proposed solution. On top, we require authors to label the
solution in order for us to evaluate its complexity as explained

Incremental MTL vs. GPLs: Class into Relational Database Schema TTC23, July,2023, Leicester, UK

inSec. 3.3. The score of a submitted solution will be computed from
these three criteria.

However, we welcome authors to elaborate on further features
of their solution. Although not explicitly required, the authors can
report on further quality aspects their solution contributes to. For
instance, the performance in terms of execution times may be an
additional upside of the transformation. Similarly, further criteria,
such as strategies to efficiently compute and perform the incre-
mental update or saving memory consumption may be regarded to
compare the solutions.

4 BENCHMARK
This section introduces the evaluation criteria and the benchmark
framework used to evaluate solutions submitted by participants.

4.1 Evaluation Criteria
The evaluation fosters two kinds of criteria, automatically measured
and self-reported ones. In the sequel, we describe both types of
criteria.

Automatically measured. involve the completeness of the trans-
formation as well as the correctness. The latter is implicitly used to
determine the completeness.

Completeness: Completeness describes for how many of the
tasks described in Sec. 3 a solution is submitted. Since this call aims
for a comprehensive comparison between the languages, complete-
ness also encompasses analyzing the submitted solution to detect
variants in the transformation process and how does it compare
with the reference implementation behavior.

Correctness: Correctness describes the degree to which the
submitted solutions commute with the reference solution. The in-
cremental contributed solution should commute with the provided
batch reference transformation when the same change was applied
to the source model. Authors can use the benchmark framework to
self evaluate the correctness of their solution and to improve their
transformation.

Self-Reported. measures regard the performance in terms of ex-
ecution time, the syntactic complexity in terms of labeling the
solution specification as well as further optionally reported solution-
specific properties which may benefit any of the both aspects.

Performance: Performance describes how timely the solution
can produce a result for a given input task. The degree of correctness
does not factor into the performance evaluation. Solutions may
report on the execution time of a given task using a unit of time
(e.g. in milliseconds, in seconds, in minutes). Specific values in the
chosen unit of time are not required but can be reported if they are
known to the authors.

Syntactic Complexity: For the purpose of this case, we are
interested in how much code is written to implement different
aspects of model transformation. The quality of a solution is mea-
sured in how much code, measured in the amount of words that
are separated either by whitespaces or other delimiters used in
the languages, e.g. dot(.) and different parentheses (() []{}) [8]. We
ask authors of submitted solutions to kindly provide the measures
for their solutions separately using the labeling format introduced
in Sec. 3.3. The quality of a submission is ranked based on howmuch

of its code is focused on the actual transformation, i.e. Transforma-
tion and Helper/Expression Outsourcing definitions, compared to the
transformation specific additional aspects Setup, Model Traversal
and Tracing.

Additional Propertieswhichmay help to perform the tasks in a
submitted solution may be reported. While we will not score them,
they may still positively influence complexity and performance
(e.g., explicit or implicit trace maintenance) and therefore, may be
additional relevant information.

4.2 Benchmark Framework
We provide a benchmark framework to automate verification of
correctness and completeness of solutions. Detailed information
on the framework and how to use and integrate your solution are
available on the repository of the case https://github.com/ATL-
Research/incremental-class2relational. Source code of the batch
ATL transformation, the incremental ATOL transformation, sources
models, change models, and expected models are also available in
the repository.

We provide metamodels in Ecore and models in XMI formats.
Change models use the same format as proposed in the TTC 2018
Social Network case, refer to [6] for detailed explanations.

The benchmark validates the correctness and completeness of
proposed solutions.

4.2.1 Correctness evaluation. We evaluate correctness, as defined
in Sec. 3.1, by comparing two executions of a transformation. The
first execution performs the following actions:

(1) load a source model
(2) apply the transformation
(3) load and apply a change model to the source model
(4) propagate the change to the target
(5) save the target model
The second execution instead performs the following actions:
(1) load a source model that already has the change applied
(2) apply the transformation
(3) save the target model
To pass the correctness test, solutions must return identical solu-

tions for both executions.We use the SimpleEMFModelComparator2
tool to compare the target models of the first and second execution.

4.2.2 Completeness evaluation. Unlike correctness, completeness,
as described in Sec. 3.2, is evaluated using a set of source models
and changes that test specific behaviors to determine which level of
completeness the solution achieves. Using a script, the benchmark
automatically executes proposed transformations on various test
cases and compares the transformation outputs to the outputs we
expected.

The procedure is as follow:
(1) load a source model
(2) apply the transformation
(3) load and apply a change model that corresponds to the test

case
(4) propagate the change

2https://github.com/ATL-Research/EMFModelFuzzer/blob/main/lib/src/main/java/
io/github/atlresearch/emfmodelfuzzer/SimpleEMFModelComparator.xtend

https://github.com/ATL-Research/incremental-class2relational
https://github.com/ATL-Research/incremental-class2relational
https://github.com/ATL-Research/EMFModelFuzzer/blob/main/lib/src/main/java/io/github/atlresearch/emfmodelfuzzer/SimpleEMFModelComparator.xtend
https://github.com/ATL-Research/EMFModelFuzzer/blob/main/lib/src/main/java/io/github/atlresearch/emfmodelfuzzer/SimpleEMFModelComparator.xtend

TTC23, July,2023, Leicester, UK Greiner et al.

(5) save the target model
Like correctness testing, we compare each target model of a

transformation test case to the expected model of this case using
the SimpleEMFModelComparator tool.

4.2.3 Expected submission bundle. The benchmark framework pro-
vides automated tooling to check correctness and completeness of
solutions. In order for the benchmark to support submissions, we
expect solutions to implement the following calling interface.

Parameters of the transformation are passed using the following
environment variables:

• SOURCE_PATH: path of the source model
• TARGET_PATH: path of the target model
• CHANGE_PATH: optional, path of the change model

All input and change models are given in XMI format, we expect
targetmodels to also be in XMI format. If the variable CHANGE_MODEL
is not provided as we call the execution of a transformation, it
should behave like a batch transformation.

Solutions can freely use stdout and stderr to print warning,
information or debug messages.

For EMF-based solutions, we provide an abstract runner that
handles model loading and application of changes to the source
model.

5 EVALUATION
The benchmark frameworkwill provide independentmeasurements
of the completeness and the correctness of the solutions submitted
by the participants. Attendees to the contest will also evaluate the
performance and the quality of their own solution. To recognize
contributions and give appeal to this contest, we propose to award
five prizes:

• "Best Overall in GPL" to the GPL solution with the highest
ranking over all four evaluation criteria.

• "Best Overall inMTL" to theMTL solution with the highest
ranking over all four evaluation criteria.

• "Most Complete" to the solution with the highest ranking
over the Completeness evaluation criteria.

• "Best Quality" to the solution with the highest ranking
over the Quality evaluation criteria based on the information
given by authors.

• "Best Contributor" to the author that submits the highest
number of solutions in different languages. Authors which
provide solutions in both GPL and MTL categories will be
given extra points.

REFERENCES
[1] Freddie Allilaire. 2023. ATL Transformations | The Eclipse Foundation. https:

//www.eclipse.org/atl/atlTransformations/ Modified: April 6, 2023 at 13:23:55
GMT+2.

[2] Anthony Anjorin, Thomas Buchmann, and Bernhard Westfechtel. 2017. The
Families to Persons Case. In Proceedings of the 10th Transformation Tool Con-
test (TTC 2017), co-located with the 2017 Software Technologies: Applications
and Foundations (STAF 2017) (CEUR Workshop Proceedings, Vol. 2026), Antonio
García-Domínguez, Georg Hinkel, and Filip Krikava (Eds.). CEUR-WS.org, 27–34.
https://ceur-ws.org/Vol-2026/paper2.pdf

[3] Daniel Strueber. Modified: February 11, 2023 at 12:53:21 GMT+1. Henshin/Ex-
amples/Ecore2RDB - Eclipsepedia. https://wiki.eclipse.org/Henshin/Examples/
Ecore2RDB.

[4] Antonio García-Domínguez andGeorgHinkel. 2019. The TTC 2019 Live Case: Bib-
TeX to DocBook. In Proceedings of the 12th Transformation Tool Contest, co-located

with the 2019 Software Technologies: Applications and Foundations, TTC@STAF
2019, Eindhoven, The Netherlands, July 19, 2019 (CEUR Workshop Proceedings,
Vol. 2550), Antonio García-Domínguez, Georg Hinkel, and Filip Krikava (Eds.).
CEUR-WS.org, 61–65. https://ceur-ws.org/Vol-2550/paper8.pdf

[5] Stefan Götz, Matthias Tichy, and Raffaela Groner. 2021. Claimed advantages
and disadvantages of (dedicated) model transformation languages: a systematic
literature review. 20, 2 (2021), 469–503. https://doi.org/10.1007/s10270-020-
00815-4

[6] Georg Hinkel. 2018. The TTC 2018 Social Media Case. In Proceedings of the 11th
Transformation Tool Contest, co-located with co-located with the 2018 Software
Technologies: Applications and Foundations (STAF 2018) 2018, Toulouse, France, July
29, 2018 (CEUR Workshop Proceedings, Vol. 2310), Antonio García-Domínguez,
Georg Hinkel, and Filip Krikava (Eds.). CEUR-WS.org, 39–43. https://ceur-
ws.org/Vol-2310/paper5.pdf

[7] Stefan Höppner, Yves Haas, Matthias Tichy, and Katharina Juhnke. 2022. Advan-
tages and disadvantages of (dedicated) model transformation languages. 27, 6
(2022), 159. https://doi.org/10.1007/s10664-022-10194-7

[8] Stefan Höppner, Timo Kehrer, and Matthias Tichy. 2021. Contrasting Dedicated
Model Transformation Languages vs. General Purpose Languages: A Historical
Perspective on ATL vs. Java based on Complexity and Size. Software and Systems
Modeling (2021). https://doi.org/10.1007/s10270-021-00937-3

[9] INRIA. 2005. ATL Transformation Example. Class to Relational.
https://www.eclipse.org/atl/atlTransformations/Class2Relational/
ExampleClass2Relational[v00.01].pdf Modified: November 23, 2022 at
22:26:16 GMT+1.

[10] Théo Le Calvar, Frédéric Jouault, Fabien Chhel, Frédéric Saubion, and Mick-
ael Clavreul. 2019. Intensional View Definition with Constrained Incremental
Transformation Rules. In 2019 ACM/IEEE 22nd International Conference on Model
Driven Engineering Languages and Systems Companion (MODELS-C). 395–402.
https://doi.org/10.1109/MODELS-C.2019.00061

[11] Object Management Group (OMG). 2016. Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification. Version 1.3 (formal/2016-06-03 ed.).
Needham, MA. https://www.omg.org/spec/QVT/1.3/PDF.

[12] Bernhard Westfechtel. 2016. A Case Study for a Bidirectional Transformation
Between Heterogeneous Metamodels in QVT Relations. In Evaluation of Novel
Approaches to Software Engineering, Leszek A.Maciaszek and Joaquim Filipe (Eds.).
Springer International Publishing, Cham, 141–161. https://doi.org/10.1007/978-
3-319-30243-0_8

https://www.eclipse.org/atl/atlTransformations/
https://www.eclipse.org/atl/atlTransformations/
https://ceur-ws.org/Vol-2026/paper2.pdf
https://wiki.eclipse.org/Henshin/Examples/Ecore2RDB
https://wiki.eclipse.org/Henshin/Examples/Ecore2RDB
https://ceur-ws.org/Vol-2550/paper8.pdf
https://doi.org/10.1007/s10270-020-00815-4
https://doi.org/10.1007/s10270-020-00815-4
https://ceur-ws.org/Vol-2310/paper5.pdf
https://ceur-ws.org/Vol-2310/paper5.pdf
https://doi.org/10.1007/s10664-022-10194-7
https://doi.org/10.1007/s10270-021-00937-3
https://www.eclipse.org/atl/atlTransformations/Class2Relational/ExampleClass2Relational[v00.01].pdf
https://www.eclipse.org/atl/atlTransformations/Class2Relational/ExampleClass2Relational[v00.01].pdf
https://doi.org/10.1109/MODELS-C.2019.00061
https://www.omg.org/spec/QVT/1.3/PDF
https://doi.org/10.1007/978-3-319-30243-0_8
https://doi.org/10.1007/978-3-319-30243-0_8

Incremental MTL vs. GPLs: Class into Relational Database Schema TTC23, July,2023, Leicester, UK

1 public c l a s s C l a s s 2 R e l a t i o n a l I n c r em e n t a l {
2 / / S e t up 8
3 pr ivate s t a t i c f ina l R e l a t i o n a l F a c t o r y RELATIONALFACTORY = R e l a t i o n a l F a c t o r y . eINSTANCE ;
4 . . .
5 / / H e l p e r 4
6 pr ivate s t a t i c Type ob j e c t I dType () {
7 . . .
8 / / H e l p e r 2
9 return ob j e c t I dType ;
10 }
11 . . .
12 / / S e t up 8
13 public s t a t i c Resource s t a r t (S t r i n g inPath , S t r i n g ou tPa th) {
14 . . .
15 / / I n c r em e n t a l i t y 5
16 Adapter a d a p t e r I n = new Adapter Impl () {
17 / / I n c r em e n t a l i t y 5
18 public void not i fyChanged (N o t i f i c a t i o n n o t i f i c a t i o n)
19 . . .
20 }
21 }
22 / / T r a v e r s a l 8
23 public s t a t i c L i s t <Named> t r an s f o rm (L i s t <EObject > i npu t) {
24 / / T r a v e r s a l 5
25 for (EOb jec t namedElt : i npu t) {
26 . . .
27 }
28 }
29 . . .
30 / / T r a c i n g 6
31 public s t a t i c void C l a s s 2Tab l e P r e (C l a s s c) {
32 / / T r a c i n g 5
33 TRACER . addTrace (c , RELATIONALFACTORY . c r e a t e T a b l e ()) ;
34 . . .
35 }
36 / / T r a n s f o rma t i o n 6
37 public s t a t i c void C l a s s 2Tab l e (C l a s s c) {
38 / / T r a c i n g 8
39 var out = TRACER . r e s o l v e (c , RELATIONALFACTORY . c r e a t e T a b l e ()) ;
40 . . .
41 / / T r a n s f o rma t i o n 12
42 / / T r a c i n g 16
43 out . g e tCo l () . addA l l (
44 c . g e tA t t r () . s t ream ()
45 . f i l t e r (e −> ! e . i sMu l t i V a l u e d ())
46 . map ($ −> TRACER . r e s o l v e ($, RELATIONALFACTORY . createColumn ()))
47 . f i l t e r ($ −> $!= null)
48 . c o l l e c t (C o l l e c t o r s . t o L i s t ())) ;
49 }
50 . . .
51 }

Figure 3: Example labeling for Java

	Abstract
	1 Introduction
	2 Transformation case
	2.1 Metamodels
	2.2 Transformation Behavior

	3 Task
	3.1 Correctness: Commutativity
	3.2 Completeness: Incremental Behavior
	3.3 Syntactic Complexity: Labeling of Transformations
	3.4 Additional Features: Performance and Quality

	4 Benchmark
	4.1 Evaluation Criteria
	4.2 Benchmark Framework

	5 Evaluation
	References

