
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Asymmetric and Directed Bidirectional Transformation for
Container Orchestrations

Antonio Garcia-Dominguez
a.garcia-dominguez@york.ac.uk

University of York
York, UK

ABSTRACT
In many DevOps scenarios, tools operate from declarative mod-
els of intended system configuration (e.g. Ansible/Puppet/Chef
descriptions of infrastructure-as-code, or Kubernetes and Docker
Compose descriptions of orchestrations of containers). DevOps-
oriented domain-specific modeling notations will typically only
cover a subset of all the capabilities in these configuration formats:
this means users will need to manually edit the configuration files
generated from the higher-level models. In many editing sessions,
users will also touch upon parts that came from the high-level
model, and will want that high-level model to be updated accord-
ingly. Likewise, a user may want to introduce a change through
the high-level model and not lose the YAML customisations that
are unrelated to the high-level model. These requirements imply a
need for a bidirectional transformation (“bx”) which is asymmetric
(the configuration file contains all the information in the high-level
model and more), and directed (changes are only applied to one side
at a time). This case proposes revisiting the current state of bx tools
for asymmetric and directed transformations, and complements the
prior Families to Persons case from TTC 2017, which focused on a
symmetrical and directed transformation. The case will reuse the
Benchmarx framework from the TTC 2017 case.

CCS CONCEPTS
• Software and its engineering → Domain specific languages.

KEYWORDS
container orchestration, bidirectional transformations, model merg-
ing, graphical models, YAML

ACM Reference Format:
Antonio Garcia-Dominguez. 2023. Asymmetric and Directed Bidirectional
Transformation for Container Orchestrations. In Proceedings of 15th Trans-
formation Tool Contest (TTC’23). ACM, New York, NY, USA, 6 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
DevOps was defined by Leite et al. [6] as a “collaborative and mul-
tidisciplinary effort within an organization to automate continuous

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
TTC’23, July 20, 2023, Leicester, UK
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $0.00
https://doi.org/XXXXXXX.XXXXXXX

delivery of new software versions, while guaranteeing their correct-
ness and reliability”. The rising interest in DevOps (with over 10% of
the 61,302 responses to the Stack Overflow 2022 Developer Survey1
considering themselves “DevOps specialists”) has motivated the
creation of a number of domain-specific modelling notations for it,
covering aspects such as microservice architectures [8], DevOps
processes [4], or multi-cloud applications [5].

At a technical level, the automated continuous delivery efforts
in DevOps typically require using tools to automate deployment.
These include infrastructure-as-code tools (e.g. Puppet2 or Ansi-
ble3), and container orchestration tools such as Kubernetes4 or
Docker Compose5. Many of these tools operate by reading a declar-
ative description of the desired system state or the intended com-
bination of containers, usually written in a structured format (e.g.
YAML6) according to a loosely defined schema (c.f. the Docker Com-
pose file format reference, which evolves from version to version7).

It stands to reason that DevOps model-driven approaches would
often aim to generate at least some of these configuration files from
the high-level descriptions of the intended service compositions.
Piedade et al. observed a significant reduction in development effort
with a visual notation for developing Docker Compose container
orchestrations [7], while also noticing that several of the existing
visual tools for Docker Compose lacked support for certain Docker
Compose concepts (e.g. DockStation did not support specifying
networks). Their high-level descriptions will only model the subset
of the capabilities of the underlying tools that is relevant for their
abstractions, as trying to capture all capabilities would overcompli-
cate the models and make them more brittle to minor changes in
the underlying configuration file formats. From this limitation, it
follows that users would typically manually customise the gener-
ated configuration files to cover the aspects not described by the
high-level model. Users may later want to update the high-level
model from the configuration file, to use it for visualisation (e.g. for
onboarding new developers) or for reorganising the system in a
more approachable notation with domain-specific validation rules.

It is worth noting that there are some agreed-upon specifica-
tions in cloud computing that have been adapted into model-driven
approaches. Zalila et al. [9] proposed OCCIware Studio, a model-
driven toolchain that formalises the concepts in the Open Cloud
Computing Interface (OCCI, a unified RESTful protocol for cloud
computing management) into an OCCIware Ecore metamodel, and
provides a runtime component for design, deployment, execution,

1https://survey.stackoverflow.co/2022/
2https://www.puppet.com/
3https://www.ansible.com/
4https://kubernetes.io/
5https://docs.docker.com/compose/
6https://yaml.org/
7https://docs.docker.com/compose/compose-file/

1

https://orcid.org/0000-0002-4744-9150
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://survey.stackoverflow.co/2022/
https://www.puppet.com/
https://www.ansible.com/
https://kubernetes.io/
https://docs.docker.com/compose/
https://yaml.org/
https://docs.docker.com/compose/compose-file/

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

TTC’23, July 20, 2023, Leicester, UK Garcia-Dominguez

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

and supervision of cloud applications. Challita et al. later proposed
TOSCA Studio [3], also based on OCCIware, which provides a
model-driven approach to design OASIS Topology and Orchestra-
tion Specification for Cloud Applications (TOSCA) descriptions:
these are usually written in YAML and only describe the structure
of cloud applications in a declarative manner, leaving the exact
implementation up to the TOSCA-supporting cloud provider. Open-
TOSCA8 is an open-source end-to-end toolchain for deploying and
managing cloud applications, which includes EclipseWinery, a web-
based environment for visual modeling of TOSCA cloud application
topologies (which generates TOSCA YAML descriptions).

This paper proposes a case based on a scenario inspired by
the findings of Piedade et al. [7], focusing on container orchestra-
tion with Docker Compose. A high-level graphical domain-specific
model (implemented with Sirius) is transformed into a Docker Com-
pose YAML file, which can be customised by the user using a plain
text editor. The high-level model can be updated from the YAML
file at any time. It should also be possible to edit the high-level
model and push the changes to the YAML file, while retaining any
elements that were not part of the high-level graphical DSML.

At an essential level, this case implies the definition of a bidi-
rectional transformation (“bx” from now on) between the high-
level DSML and Docker Compose YAML files. In TTC 2017, the
Families to Persons case by Anjorin et al. [1] evaluated the avail-
able approaches for symmetric and directed bx using the proposed
Benchmarx framework. This work was later updated and expanded
upon in a journal paper [2], which also collected a number of useful
terms to describe bx, as well as a feature model to cover the vari-
ability of bx tools. Families to Persons was symmetric (neither side
was a view of the other, with information loss happening in both
directions), and directed (consistency-relevant changes were only
applied to one side at a time). The proposed case is still directed,
but it is asymmetrical (the Docker Compose YAML file contains
strictly more information than the high-level model, so informa-
tion loss only happens in one direction). While this should make it
conceptually “easier” than the symmetric Families to Persons bx,
the mapping is also more complicated, with some objects in the
high-level model being turned into simple string concatenations
in the target model. At the same time, it can be argued that the
generation of Docker Compose YAML files is a more industrially
relevant scenario: if the current state of the art in bx tools (which
may have significantly evolved since the TTC 2017 case) can handle
it well, this could prove to be an interesting application niche.

2 MODELING LANGUAGES
The proposed bx is between two languages: a “Containers” domain-
specificmodelling language (shown in Figure 1), and a simplification
of the YAML data model called “MiniYAML” (shown in Figure 2).

2.1 Abstract syntax
Models conforming to the Containers metamodel (Figure 1) have a
Composition as their root object, containing a number of Nodes
of various types. An Image represents a specific Docker image by
its full name including the registry (if it is not the Docker Hub) and
tag, as stored in its image attribute. A Container is a component
8https://www.opentosca.org/

Composition Node

NamedElement

name : EString

Image

image : EString

Container

replicas : EInt = 1

VolumeMount

path : EString

Volume

[0..*] nodes

[0..1] image

[0..*] dependsOn

[0..*] volumeMounts

[0..1] volume

Figure 1: Class diagram for the Containers metamodel

Value

Map MapEntry

key : EString

List Scalar

value : EString

[0..*] entries

[0..1] value[0..*] values

Figure 2: Class diagram for the MiniYAML metamodel

that runs one or more replicas of a certain Image. A Container
may have VolumeMounts of certain Volumes (units of persistent
storage) at specific paths.Containers andVolumes areNamedEle-
ments, which have a name that also acts as their unique identifier.
A Container may dependOn other Containers, meaning that it
should only be started after its dependencies have been started.

On the other hand, a model conforming to the MiniYAML meta-
model (Figure 2) has aMap as its root object, which containsMapEn-
try objects. EachMapEntry has a key (a string, which should be
unique within its containingMap), and a value. BesidesMap, other
types of Values include Lists (of Values), and Scalar values with
a string (this is a simplification from YAML, which can support
integer and floating point types through its JSON schema).

2.2 Concrete syntax
The concrete syntax of the Containers modelling language is imple-
mented through Eclipse Sirius9 and exemplified in Figure 3, which
models the container orchestration used by the AutoFeedback sys-
tem developed by the author10. Containers are grey rectangles
decorated with a puzzle piece icon, labelled after their name. A
Container may contain yellow ovals representing their Volume-
Mounts, labelled after their paths and decorated with a folder icon.
An Image is reflected as a green oval with a cardboard box icon,
labelled after their image. Volumes are purple rectangles with a
hard disk icon, labelled after their name. Note that the replicas of
a Container is not part of its graphical syntax, but can be edited
through the Properties view of the Sirius editor.

The MiniYAML language does not have an explicitly defined
concrete syntax: while the case artifact includes a tree-based editor
autogenerated from the metamodel, the ultimate concrete syntax is

9https://www.eclipse.org/sirius/
10https://gitlab.com/autofeedback/autofeedback-webapp/-/blob/master/docker-
compose.yml

2

https://www.opentosca.org/
https://www.eclipse.org/sirius/
https://gitlab.com/autofeedback/autofeedback-webapp/-/blob/master/docker-compose.yml
https://gitlab.com/autofeedback/autofeedback-webapp/-/blob/master/docker-compose.yml

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Asymmetric and Directed Bidirectional Transformation for Container Orchestrations TTC’23, July 20, 2023, Leicester, UK

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

mariadb

/bitnami/mariadb mariadb_data

redis

/bitnami/redis/data
redis_data

nginx

docker.io/bitnami/mariadb:10.5-debian-10

java-worker

/home/www-data/.m2 m2_data

default-
worker

autofeedback/worker:production

echo

docker.io/bitnami/redis:6.0-debian-10

autofeedback/nginx:production

autofeedback/app:productionautofeedback/echo:production

app

Figure 3: Example containers model, based on the AutoFeedback open-source system

Listing 1: Example YAML from Figure 3
version: '2.4'
services:
mariadb:
image: docker.io/bitnami/mariadb:10.5−debian−10
volumes: ['mariadb_data:/bitnami/mariadb']

redis:
image: docker.io/bitnami/ redis :6.0−debian−10
volumes: ['redis_data:/bitnami/redis/data']

nginx: {image: 'autofeedback/nginx:production'}
app:
image: autofeedback/app:production
depends_on: [mariadb, redis]

java−worker:
image: autofeedback/worker:production
replicas: '2'
volumes: ['m2_data:/home/www-data/.m2']
depends_on: [app]

default−worker:
image: autofeedback/worker:production
replicas: '2'
depends_on: [app]

echo:
image: autofeedback/echo:production
depends_on: [redis]

volumes: {mariadb_data: null, redis_data : null , m2_data: null}

YAML itself. The case artifact includes an uk.ac.york.ttc.mini-
yaml.model2yaml project with aMiniYAMLConverter Java class
which uses SnakeYAML11 to automatically convert between Mini-
YAML models in XMI format, and YAML files.

3 INTENDED TRANSFORMATIONS
The general intent of the transformation is to start from a model
as the one in Figure 3, and produce a YAML document such as the
one in Listing 1. This YAML document can be edited manually in
various ways: a user could do a find-and-replace to rename a given
11https://bitbucket.org/snakeyaml/snakeyaml

container, or they could add extra options for a given container
or volume which are not part of the Containers metamodel. It
should be possible for the user to update the Containers model
from the YAML file at any point. It should also be possible to edit a
Containers model and update the YAML file from it, while keeping
any customisations that are unrelated to the Containers metamodel.

3.1 High-level description
In its forward direction (from Containers to MiniYAML), operating
in batch mode (where the MiniYAML model does not exist yet), the
transformation should follow these rules:

(1) A Composition should be transformed into a Map with
three keys: version set to a “2.4” Scalar, services set to
a Map whose MapEntry objects are produced from the
Containers, and volumes set to a Map produced from the
Volumes.

(2) A Container should be transformed into a MapEntry
where the key is equal to its name. The value of theMapEn-
try should be aMap of its own, with at least the image key
set to the image of the Image of the Container.
TheMap may also have keys for:
• replicas, if the value is different from 1.
• volumes, set to a List produced from the VolumeMo-

unts of the Container.
• depends_on, set to a List of Scalars with the names

of the Containers that this Container depends upon.
(3) A VolumeMount should be transformed into a Scalar

whose value should be of the form “volumeName:path”.
(4) A Volume should be turned into aMapEntry whose key

should be its name. TheMapEntry should not have a value.
If the MiniYAML model already exists before running the trans-

formation forward, then the containers, volumes, volume mounts,
replicas, and inter-container dependencies of the Containers model
should replace those of the MiniYAML model, while preserving any
other elements outside the Containers metamodel (e.g. a custom
restart entry in a container’sMap). At the very least, adding or
removing one of these elements from the Containers model should
add or remove the relevant element in the MiniYAML model. Ide-
ally, the transformation should be able to handle the renaming of
a Container or Volume while preserving the additional content

3

https://bitbucket.org/snakeyaml/snakeyaml

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

TTC’23, July 20, 2023, Leicester, UK Garcia-Dominguez

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

that is unrelated to the Containers metamodel. Furthermore, the
transformation should minimise unnecessary changes in the YAML
file (e.g. changes in the order of the map entries).

In its backward direction (from MiniYAML to Containers) in
batch mode, the transformation should recover the Compositions,
Images, Volumes and VolumeMounts from the same MiniYAML
elements that would have been produced in the forward direction.
These will replace the contents of the Containers model entirely.
Ideally, the transformation should minimise unnecessary changes
(e.g. changing the path of an Image in the model, which would
cause unnecessary changes in the Sirius diagrams).

3.2 Reference implementation
Besides the above high-level description, the case materials12 in-
clude EMF-based implementations of the Containers andMiniYAML
metamodels, and a reference implementation of the transforma-
tion using a combination of languages from the Eclipse Epsilon
open-source project:

• An ETL (Epsilon Transformation Language) script trans-
forming Containers models to MiniYAML models (contai-
ners2miniyaml.etl).

• An ETL script transforming MiniYAML models to Contain-
ers models (miniyaml2containers.etl).

• A combination of an Epsilon Merging Language (EML)
script, an Epsilon Comparison Language (ECL) script, and
an ETL script which can merge two MiniYAML models to-
gether (mergeMiniyaml.eml, compareMiniyaml.ecl, and
mergeMiniyaml.etl) respectively.
In this transformation, the “left” MiniYAML model is the
“prioritary” one: its containers, volumes, volume mounts,
replicas, and inter-container dependencies will take prece-
dence over those of the “right” MiniYAMLmodel. Any other
content (e.g. customisations outside the Containers meta-
model) will be merged.
At a high-level, the ECL script computes a match between
the “left” and “right” models based on name-based paths
(e.g. services.redis.image), where Scalars also con-
sider their value. The EML script merges matching elements
together, and the ETL script copies non-matching elements
from either side.

These transformations are then encapsulated as Java classes:
• ContainersToMiniYAML implements the batch forward

transformation, MergingContainersToMiniYAML imple-
ments the forward transformation with merging if the
MiniYAML model already exists, and MergingContain-
ersToYAML class implements the forward transformation
with merging if the YAML file already exists.

• MiniYAMLToContainers implements the batch backward
transformation from a MiniYAML model to a Containers
model, and YAMLToContainers also transforms the YAML
file into a MiniYAML model before transforming it into a
Containers model. The reference implementation does not
have a “merging” version of the backward transformation:
it replaces the Containers model if it exists.

12https://github.com/agarciadom/benchmarx/tree/main/examples/
containerstominiyaml

4 RESEARCH QUESTIONS
The aim of this case is to explore the capabilities of the current state
of the art of transformation tools in an asymmetric and directed bx.
Specifically, the case is intended to answer these questions:

(1) How concisely can we specify such a bx with current tools?
Having to maintain separate one-way transformations as
in the reference implementation would incur significant
cost when scaling up to the full complexity of real-world
metamodels. Ideally, it should be possible to implement the
bx through a single set of relationships, without repetition.
This could be done through explicit consistency relation-
ships, through triple graph grammars, or through static
analysis of a one-way transformation (with perhaps some
use of heuristics).

(2) How well can such a bx preserve customisations in the
YAML which are outside of the bx, across various types of
changes in the models?
The reference implementation can handle well the case
where elements are added and removed, but it cannot han-
dle renames well: renaming a container in the Containers
model will result in losing the additional content in the
YAML file. A bx tool that can operate with operational
deltas (“o-deltas”) would most likely be able to handle this
case in a more robust manner.

(3) Howwould such a bx scale to larger models, with more con-
tainers, more volumes, and more custom YAML elements
outside of the transformation’s control?
In the reference implementation, the merging process of
the MiniYAML model newly created from the Containers
model with the previously existing (and potentially cus-
tomised) MiniYAML model requires pairwise object match-
ing, with 𝑂 (𝑛2) path comparisons per type. Is such a cost
unavoidable, or are there more efficient ways to establish
and maintain the relationships between the Containers and
MiniYAML models?

In practice, it is unlikely that the YAML documents will grow
particularly large13. Performance would likely not be an issue for
this bidirectional transformation. Instead, maintainability and keep-
ing to the principle of “least change” would be the most important
aspects to tackle. Still, the case materials include an experiment for
evaluating the scalability of the solutions to larger models.

5 EVALUATION CRITERIA
Solutions will be evaluated across the following criteria:

(1) Correctness: following the approach from the authors of the
Benchmarx benchmark [2], test cases will check that the
dependent model is consistent with the master model. This
means that they should have the same containers, volumes,
volume mounts, and images.
This criteria will be measured according to the % of test
cases that are passed. The test cases will cover various
scenarios, e.g. an initial “batch” execution in either direction,

13The average size of the composer.yaml files in the docker/awesome-compose
Github project is 609B: https://github.com/docker/awesome-compose.

4

https://github.com/agarciadom/benchmarx/tree/main/examples/containerstominiyaml
https://github.com/agarciadom/benchmarx/tree/main/examples/containerstominiyaml
https://github.com/docker/awesome-compose.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Asymmetric and Directed Bidirectional Transformation for Container Orchestrations TTC’23, July 20, 2023, Leicester, UK

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Listing 2: Sample code for measuring AST/ASG side of trans-
formation rules modelled in EMF
public int countNodes(Resource resource) {
final TreeIterator<EObject> it = resource.getAllContents();
int size = 0;
while (it.hasNext()) {
it.next();
++size;

}
return size;

}

or the update of the dependent side after a certain change
in the master side.

(2) Conciseness: a more concise description of the transforma-
tion should in principle be more maintainable. Since the
statement structure can be significantly different across lan-
guages, the metric will be “number of nodes in the transfor-
mation’s abstract syntax, ignoring comments”. This differs
from the approach that was followed in the Benchmarx
“Families to Persons” study that is the base of this case [1],
which counted words while ignoring comments. This is to
accommodate both textual and graphical transformation
notations (e.g. triple graph grammars). For instance, if the
transformation was implemented as an Eclipse Modeling
Framework (EMF) model, the metric would be equivalent
to the code in Listing 2.
The case includes an ast-counter Maven project which
can count the number of AST nodes in Java code and in
the Epsilon languages used for the reference solution. Par-
ticipants are encouraged to extend this project to measure
their source languages (e.g. by counting the number of ele-
ments in an XMI-serialised model), by adding the relevant
implementations of the IFileMeasurer interface and as-
sociating it to the appropriate extension inside the static
block of the FolderMeasurer class. It is also acceptable
to produce these AST measurements separately as part of
their solution (e.g. if no JVM-friendly parsers exist for a
transformation language).
The reference implementation includes an Eclipse launch
configuration that measures the number of AST nodes in
its Java and Epsilon source code. Participants are encour-
aged to duplicate this launch configuration for their own
solutions, providing it with the root folder of their trans-
formation source code.
Note that the reference implementation also includes a
count-words.sh script which uses the C preprocessor to
remove comments for Epsilon / Java programs. This is only
to emulate what the old approach (based on words) would
have produced, for the sake of comparison: it will not be
used for the contest, as results may not be directly com-
parable. As an example, these are the results of the two
measurement methods at the time of writing for the refer-
ence implementation:

• AST node counting: 86 nodes in ECL, 241 nodes in EML,
92 nodes in EOL, 805 nodes in ETL, and 1772 nodes in
Java, for a total of 2996 nodes.

• Word counting: 84 words in ECL, 162 words in EML,
81 words in EOL, 485 words in ETL, and 809 words in
Java, for a total of 1621 words.

(3) Least Change: beyond just correctness, the transformations
should avoid making any unnecessary changes that do not
impact the consistency of the master and dependent model.
For instance, in the forward direction, they should preserve
the additional information in the existing YAML file, and
the relative order of the keys in the YAML document. In the
backward direction, they should also preserve the locations
of the various nodes, avoiding disturbing existing Sirius
diagrams whenever possible.
To measure this, the test suite has been designed to be
run in two modes: 1) requiring that if the YAML model
already exists, the relative order of map entries and list
items is preserved, and 2) waiving this requirement. Mode
1 is intended for evaluating “least change” (in terms of % of
tests passed in this mode), whereas Mode 2 is for evaluating
general correctness of the transformation.

(4) Scalability: the transformations should be able to scale to
models with increasing numbers of containers, volumes,
and images. The case materials include a ScalabilityMea-
surements class to measure this in the forward and back-
ward directions, both in batch and in incremental situations.

6 TARGET PRIZES
The prizes will be based on a combination of the three criteria
above. The “Most Complete” prize will go to the solution that passes
the most tests (resolving ties using the “Least Change” criterion).
The “Most Concise” prize will go to the solution that requires the
least nodes, while still passing the correctness tests for adding
and deleting elements (the tests for renaming elements will not
be considered). The “Most Scalable” prize will go to the solution
with the lowest execution times, which is still correct in the batch
scenarios and in the incremental addition and removal of containers,
volumes, volume mounts, and images.

If there are enough solutions, an overall ranking can be devised
by adding their rankings in each category, and sorting in ascending
order. Ties will be resolved by sorting in ascending order of standard
deviation (therefore, a tool that is 2nd/2nd would be ranked above a
tool that is 1st/3rd). Further ties will be resolved by the case author
and TTC organizers.

7 JOURNAL-QUALITY SOLUTION CRITERIA
To be eligible for a follow-up journal publication, a solution must
be correct in the “batch” context in both directions, and in the “in-
cremental” context in regard to addition and removal of containers,
volumes, volume mounts, and images. Conciseness, “least change”,
and scalability are desirable properties, but not required for such
a publication. Ideally, declarative solutions that support maintain-
ability by not requiring the specification of both transformation
directions would be preferred.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

TTC’23, July 20, 2023, Leicester, UK Garcia-Dominguez

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

REFERENCES
[1] Anthony Anjorin, Thomas Buchmann, and Bernhard Westfechtel. 2017. The

Families to Persons Case. In Proceedings of the 10th Transformation Tool Contest,
Vol. 2026. CEUR-WS.org, Marburg, Germany, 27–34. http://ceur-ws.org/Vol-
2026/paper2.pdf

[2] Anthony Anjorin, Thomas Buchmann, Bernhard Westfechtel, Zinovy Diskin,
Hsiang-Shang Ko, Romina Eramo, Georg Hinkel, Leila Samimi-Dehkordi, and
Albert Zündorf. 2020. Benchmarking bidirectional transformations: theory, im-
plementation, application, and assessment. Software and Systems Modeling 19, 3
(May 2020), 647–691. https://doi.org/10.1007/s10270-019-00752-x

[3] Stéphanie Challita, Fabian Korte, Johannes Erbel, Faiez Zalila, Jens Grabowski,
and Philippe Merle. 2021. Model-based cloud resource management with TOSCA
and OCCI. Software and Systems Modeling 20, 5 (Oct. 2021), 1609–1631. https:
//doi.org/10.1007/s10270-021-00869-y

[4] Alessandro Colantoni, Luca Berardinelli, and Manuel Wimmer. 2020. DevOpsML:
towards modeling DevOps processes and platforms. In Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems: Companion Proceedings. ACM, Virtual Event Canada. https://doi.org/10.

1145/3417990.3420203
[5] Nicolas Ferry, Franck Chauvel, Hui Song, Alessandro Rossini, Maksym Lushpenko,

and Arnor Solberg. 2018. CloudMF: Model-Driven Management of Multi-Cloud
Applications. ACM Transactions on Internet Technology 18, 2 (May 2018). https:
//doi.org/10.1145/3125621

[6] Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo Meirelles.
2020. A Survey of DevOps Concepts and Challenges. Comput. Surveys 52, 6 (Nov.
2020). https://doi.org/10.1145/3359981

[7] Bruno Piedade, João Pedro Dias, and Filipe F. Correia. 2022. Visual notations in
container orchestrations: an empirical study with Docker Compose. Software and
Systems Modeling 21, 5 (Oct. 2022), 1983–2005. https://doi.org/10.1007/s10270-
022-01027-8

[8] Jonas Sorgalla, Philip Wizenty, Florian Rademacher, Sabine Sachweh, and Albert
Zündorf. 2021. Applying Model-Driven Engineering to Stimulate the Adoption of
DevOps Processes in Small and Medium-Sized Development Organizations. SN
Computer Science 2, 6 (Sept. 2021). https://doi.org/10.1007/s42979-021-00825-z

[9] Faiez Zalila, Stéphanie Challita, and Philippe Merle. 2019. Model-driven cloud
resource management with OCCIware. Future Generation Computer Systems 99
(Oct. 2019), 260–277. https://doi.org/10.1016/j.future.2019.04.015

6

http://ceur-ws.org/Vol-2026/paper2.pdf
http://ceur-ws.org/Vol-2026/paper2.pdf
https://doi.org/10.1007/s10270-019-00752-x
https://doi.org/10.1007/s10270-021-00869-y
https://doi.org/10.1007/s10270-021-00869-y
https://doi.org/10.1145/3417990.3420203
https://doi.org/10.1145/3417990.3420203
https://doi.org/10.1145/3125621
https://doi.org/10.1145/3125621
https://doi.org/10.1145/3359981
https://doi.org/10.1007/s10270-022-01027-8
https://doi.org/10.1007/s10270-022-01027-8
https://doi.org/10.1007/s42979-021-00825-z
https://doi.org/10.1016/j.future.2019.04.015

	Abstract
	1 Introduction
	2 Modeling Languages
	2.1 Abstract syntax
	2.2 Concrete syntax

	3 Intended Transformations
	3.1 High-level description
	3.2 Reference implementation

	4 Research questions
	5 Evaluation criteria
	6 Target prizes
	7 Journal-quality solution criteria
	References

