
Asymmetric and directed bidirectional transformation for
container orchestrations with YAMTL and EMF-Syncer
Artur Boronat

1

1School of Computing and Mathematical Sciences, University of Leicester, University Rd, Leicester, LE1 7RH, UK

Abstract
Container orchestration plays a vital role in DevOps practices, enabling efficient management of containers within complex

application architectures. However, a challenge arises in bridging the gap between high-level graphical representations of

container orchestration models and the concrete configuration files required by container orchestration tools. This paper

proposes a bidirectional and asymmetric transformation approach from container orchestrations to MiniYAML using YAMTL,

a unidirectional model-to-model transformation language, and the EMFSyncer, a bidirectional object syncer. We explore

the integration of YAMTL and the EMFSyncer to leverage their complementary strengths. The paper outlines the solution,

presents the transformation rules, and discusses the evaluation of the solution using benchmark criteria, to some extent.

Keywords
Incremental model-to-model transformation, asymmetric transformation, EMF.

1. Introduction
In recent years, DevOps practices have gained significant

traction in software development, emphasizing the col-

laboration between development and operations teams

to achieve automated and continuous delivery of soft-

ware. As part of the DevOps process, container orches-

tration has become a crucial aspect, enabling the efficient

management of containers within complex application

architectures. Docker Compose, a popular container or-

chestration tool, allows developers to define and manage

multi-container applications.

However, a challenge arises when attempting to bridge

the gap between the high-level graphical representa-

tion of container orchestration models and the concrete

configuration files required by container orchestration

tools. This transformation problem involves translating a

domain-specific model, representing container orchestra-

tions, into YAML documents that adhere to the specific

requirements of Docker Compose.

The proposed case is bidirectional and asymmetric.

The transformation should not only support the con-

version from the container orchestration model to the

YAML document but also enable the reverse process. This

bidirectional nature allows developers to update and syn-

chronize changes made in either the model or the YAML

document. However, the Docker Compose YAML file

contains strictly more information than the high-level

TTC’23: Transformation Tool Contest, Part of the Software
Technologies: Applications and Foundations (STAF) federated
conferences, Eds. A. Boronat, A. García-Domínguez, and G. Hinkel, 20
July 2023, Leicester, United Kingdom.
$ artur.boronat@leicester.ac.uk (A. Boronat)

� https://arturboronat.info (A. Boronat)

� 0000-0003-2024-1736 (A. Boronat)

© 2023 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

model, and any changes made in the high-level model

should preserve those changes made in the configuration

files.

In this paper, we present our solution for the trans-

formation problem from container orchestrations to

MiniYAML using YAMTL [1], a unidirectional model-

to-model transformation language, and the EMF-Syncer

[2, 3], a bidirectional object syncer. While YAMTL and

the EMF-Syncer are designed for distinct use cases, in

this paper, we explore their integration to harness their

complementary strengths.

The structure of the paper is as follows: section 2

provides a brief introduction to the YAMTL language

and to the EMF-Syncer ; section 3 describes an outline

of the YAMTL solution; section 3 presents an outline of

the solution; section ?? presents the transformation rules

used in the YAMTL solution; and section ?? discusses the

evaluation of the solution with the benchmark criteria.

2. YAMTL and EMF-syncer

2.1. YAMTL
YAMTL [4, 1] is a model transformation language for EMF

models, with support for incremental execution [3, 2],

which can be used as an internal language of any JVM

language. For this paper, we have chosen its Groovy

dialect.

A YAMTL model transformation is defined as a mod-

ule, a class specializing the class YAMTLModule, containing

the declaration of transformation rules. Each rule has

an input pattern for matching variables and an output

pattern for creating objects. An input pattern consists of

in elements together with a global rule filter condition,

which is true if not specified. Each of the in elements is

mailto:artur.boronat@leicester.ac.uk
https://arturboronat.info
https://orcid.org/0000-0003-2024-1736
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

declared with a variable name, a type and a local filter

condition, which is true if not specified. An output pat-

tern consists of out elements, each of which is declared

with a variable name, a type and an action block. Fil-

ter conditions and action blocks are specified as Groovy

closures
1

.

When applying a YAMTL transformation to an input

model, the pattern matcher finds all rule matches that

satisfy local filter conditions. When a total match is found,

the satisfaction of that match is finally asserted by the

rule filter condition. Once all matches are found, the

transformation engine computes an output match for

each input match using the expressions in the out action

blocks of the corresponding rule.

The YAMTL engine has been extended with an incre-

mental execution mode, which consists of two phases:

the initial phase, the transformation is executed in batch

mode but, additionally, tracks feature calls in objects of

the source model involved in transformation steps as

dependencies; and the propagation phase, the transforma-

tion is executed incrementally for a given source update

and only those transformation steps affected by the up-

date are (re-)executed. This means that components of

YAMTL’s execution model have been extended but the

syntax used to define model transformations is preserved.

Hence, a YAMTL batch model transformation can be ex-

ecuted in incremental mode, without any additional user

specification overhead.

In YAMTL transformations, changes made to the in-

put model after the initialization phase can be tracked

using the EMF adapter framework, and these changes

are linked to specific in or out elements in a rule. As a

result, only the action blocks of those elements are re-

executed. However, when an out element is re-executed,

the features of its matched object are reset to execute the

associated action block. While this approach prevents

the introduction of duplicities and ensures correctness,

it does not retain changes made in the output model

through independent concurrent changes. Furthermore,

resetting features that are subsequently updated in the

action block means that large parts of the input model

are removed via containment references and added again.

Such changes are also propagated to the output model.

Hence, this is the reason for using the EMF-Syncer to

synchronize the output model 𝑌1 of the transformation

with the target model 𝑌2.

2.2. EMF-Syncer
Given two EMF models, EMF-Syncer matches them and

then synchronizes their contents.

1
For a more detailed description of the YAMTL language, the

reader is referred to [1], including programmable execution strate-

gies and multiple inheritance.

The matching process is based on a generic similarity

relation defined over objects that takes into account their

attribute features and the absolute position of the object

within the model, and is performed with the match()

operation.

Model synchronization can be performed from source

to target via the operation forwardSync or from target

to source via the operation syncBack. EMF-Syncer au-

tomatically infers structural similarities between object-

oriented data models by mapping object structural fea-

tures by name, when found, translating both attribute

and reference values during the synchronization process.

When explicit matching is used, structural similarities are

inferred using the similarity relation under the operation

match() instead.

The synchronization process can be performed using a

push-based model (EAGER mode), where the entire source

program state is migrated, or using a pull-based model

(LAZY mode), where only those feature values accessed

in the target program are migrated.

The aforementioned generic mapping strategy that is

built in EMF-Syncer can be customized in order to allow

for more complex data transformations between the data

models involved. A domain-specific mapping strategy is

declared with a mapping specification that maps a source

feature type to a target feature type, possibly including

feature value transformations, either from source to tar-

get, or from target to source, or both. Two main custom

mapping strategies can be declared: renaming of feature

types and transformation of feature values.

Once two models have been synchronized, changes

that have been applied to an EMF model can be incre-

mentally propagated to their model counterpart. Such

changes are detected using the EMF adapter framework.

Incrementality in the EMF-Syncer entails that only the

changes performed in a model that was synchronized

are propagated back and merged within the counterpart

model.

3. Solution outline
The solution consists of a pattern formed by a incremen-

tal YAMTL transformation 𝑡 from source model 𝑆 to a

new target model 𝑇1, from different metamodels, and

an EMF forward syncing process syncF 0 with explicit

matching between the transformation target model 𝑇1

and a possibly existing target model 𝑇2, conforming to

the same metamodel. The model 𝑇2 may receive changes

𝜑𝑇 directly, in addition to those received via 𝑡. The dia-

gram below depicts the pattern of chained transforma-

tions based on commutative diagrams:

𝑆 𝑇1 𝑇2

𝑆′ 𝑇 ′
1 𝑇 ′

2

𝑆𝑖 𝑇 𝑖
1 𝑇 𝑖

2

𝛿𝑆,1

𝑡

𝛿𝑇,1

syncF0

𝜑𝑇,1

𝛿𝑆,𝑖

𝑝1

𝛿𝑇,𝑖

syncF1

𝜑𝑇,𝑖

𝑝2 syncF𝑖

A source model change 𝛿𝑆 and a target model change

𝜑𝑇 can occur concurrently. The source model change

𝛿𝑆 is propagated along the YAMTL transformation 𝑡
that has already been initialized via YAMTL’s operation

propagate (𝑝 for short in the diagram), inducing a tar-

get change 𝛿𝑇 . 𝛿𝑇 is represented as a dashed arrow in

the diagram because it handled by the tool internally.

A second syncing process syncF 𝑝 with explicit match-

ing is used to reconcile the changes 𝛿𝑇 and 𝜑𝑇 . Subse-

quent change propagations are represented by additional

diagrams, where transformations are labelled with the

exponent 𝑖.
The parameters of the pattern are the source model 𝑆

(and its metamodel), the target model 𝑇 (and its meta-

model), the transformation definition 𝑡, and the source

and target model changes 𝛿𝑆 and 𝜑𝑇 . The pattern needs

to be instantiated twice, once for each direction of the

transformation.

The diagram below shows how the pattern is instanti-

ated to transform a container model into a YAML config-

uration. Section 4 shows the metamodel and the model

transformation definition c2y . Section 5 shows how the

top row of transformations are configured and executed

in the method initiateSynchronisationDialogue of

the benchmark. Section 6 shows how the subsequent

rows of change propagations are executed in the method

performAndPropagateSourceEdit of the benchmark.

𝐶 𝑌1 𝑌2

𝐶 𝑌 ′
1 𝑌 ′

2

𝛿𝑆

c2y

𝛿𝑇

syncF0

𝜑𝑇

𝑝1 syncF1

4. Transformation
Container2MiniYAML

The transformation from Containers to MiniYAML is

defined in YAMTLGroovy. Listing 1 shows the module

declaration.

1 class YAMTLContainersToMiniYAML extends YAMTLModule {
2 public YAMTLContainersToMiniYAML_helpers(EPackage CMM,

EPackage YMM) {

3 header().in('cmm',CMM).out('ymm',YMM)
4 ruleStore([/* rule declaration */])
5 helperStore([/* helper operations */])
6 }
7 }

Listing 1: Transformation definition: module declaration.

Listing 1 shows the rule declaration.

1 rule('Composition2MainMap')
2 .in('c', CMM.composition)
3 .out('m', YMM.map, {
4 m.entries.add(mapEntry([
5 'key': 'version',
6 'value': scalar(['text': '2.4'])]))
7 m.entries.add(mapEntry([
8 'key': 'services',
9 'value': map([

10 'n': 0,
11 'entries': fetch(c.getNodes().findAll{n ->

CMM.container.isInstance(n)})])]))
12 m.entries.add(mapEntry([
13 'key': 'volumes',
14 'value': map([
15 'n': 1,
16 'entries': fetch(c.nodes.findAll{n ->

CMM.volume.isInstance(n)})])]))
17 }),
18
19 rule('Container2MapEntry')
20 .in('cn', CMM.container)
21 .out('meContainer', YMM.mapEntry, {
22 meContainer.key = cn.name
23 meContainer.value = map
24 })
25 .out('map', YMM.map, {
26 if (cn.image != null)
27 map.entries.add(mapEntry([
28 'key': 'image',
29 'value': scalar(['text': cn.image.image])]))
30 if (cn.replicas != 1)
31 map.entries.add(mapEntry([
32 'key': 'replicas',
33 'value': scalar(['text': cn.replicas.toString()])]))
34 if (!cn.volumeMounts.isEmpty())
35 map.entries.add(mapEntry([
36 'key': 'volumes',
37 'value': list(['values': fetch(cn.volumeMounts)])]))
38 if (!cn.dependsOn.isEmpty())
39 map.entries.add(mapEntry([
40 'key': 'depends_on',
41 'value': list(['values':

cn.dependsOn.collect{scalar(['text':
it.name])}])]))

42 }),
43
44 rule('VolumeMount2Scalar')
45 .in('vm',CMM.volumeMount)
46 .out('s', YMM.scalar, {
47 s.value = "${vm.volume.name}:${vm.path}"
48 }),
49
50 rule('Volume2MapEntry')
51 .in('v',CMM.volume)
52 .out('me', YMM.mapEntry, {

53 me.key = v.name
54 })

Listing 2: Transformation definition: rule declaration.

Listing 1 shows the helper declaration.

1 def YFactory = MiniyamlFactory.eINSTANCE;
2
3 staticOperation('scalar', { argMap ->
4 def sc = YFactory.createScalar()
5 sc.value = argMap.text
6 sc
7 }),
8
9 staticOperation('map', { argMap ->
10 def map = YFactory.createMap()
11 map.entries += argMap.entries
12 map
13 }),
14
15 staticOperation('mapEntry', { argMap ->
16 def me = YFactory.createMapEntry()
17 me.key = argMap.key
18 me.value = argMap.value
19 me
20 }),
21
22 staticOperation('list', { argMap ->
23 def map = YFactory.createList()
24 map.values += argMap.values
25 map
26 })

Listing 3: Transformation definition: helper declaration.

5. Initiate synchronization
Dialogue

The synchronization dialogue starts by configuring the

YAMTL engine, shown in Listing 4, and the EMF-Syncer

engine, shown in Listing 5.

The transformation is initialized by in-

stantiating the transformation module.

YAMTLGroovyExtensions.init(xform) initializes the

transformation module adding syntactic sugar for calling

helper operations. The transformation is instantiated

as INCREMENTAL̨ with granularity level ELEMENT and

feature calls are tracked within the package containers.

These configuration options enable YAMTL to track

feature calls within the package containers for the

Container metamodel, and incremental evaluation

will be performed at the level of in and out elements,

without having to match/re-execute the entire rule.

The input model is loaded using the operation

loadInputResource(), the transformation is exe-

cuted via the operation execute(), and the input

model is adapted to listen for notifications using

adaptInputModel("cmm"), where "cmm" is the name of

the domain to be adapted.

1 xform = new YAMTLContainersToMiniYAML(
2 ContainersPackage.eINSTANCE,
3 MiniyamlPackage.eINSTANCE);
4 YAMTLGroovyExtensions.init(xform);
5 xform.setExecutionMode(ExecutionMode.INCREMENTAL);
6 xform.setIncrementalGranularity(
7 IncrementalGranularity.ELEMENT);
8 xform.adviseWithinThisNamespaceExpressions(
9 List.of("containers..*"));

10 xform.loadInputResources(Map.of("cmm", source));
11 xform.execute();
12 xform.adaptInputModel("cmm");

Listing 4: YAMTL configuration.

The EMF-Syncer is configured with pushed-based syn-

chronization mode via enableEagerMode. Lines 3-7 in

Listing5 configure the two domains of the syncer, which

correspond to the EMF metamodel MiniYAML. The out-

put model 𝑌1 of the YAMTL transformation is set as the

source model of the syncer in lines 8-10, whereas the

target model is set to the target model 𝑌2 in lines 11-

13. The synchronization is then performed by matching

the overlapping elements in 𝑌1 and 𝑌2 and the comple-

ment 𝑌1∖𝑌2 is then merged into 𝑌2 via the operation

forwardSync.

1 syncer = new EMFSyncer();
2 syncer.enableEagerMode();
3 var miniyamlDomain = new EMFSyncerParameter_EMF(
4 "miniyaml",
5 Map.of("pk", MiniyamlPackage.eINSTANCE));
6 syncer.setSourceModelHandler(miniyamlDomain);
7 syncer.setTargetModelHandler(miniyamlDomain);
8 syncer.setSourceModel(
9 xform.getOutputModel("ymm").getContents()

10 .stream().map(o ->
(Object)o).collect(Collectors.toList()));

11 syncer.setTargetModel(
12 target.getContents()
13 .stream().map(o ->

(Object)o).collect(Collectors.toList()));
14 syncer.match();
15 syncer.forwardSync();

Listing 5: EMF-Syncer configuration.

6. Performing and propagating
source change

The propagation of the source edit is then performed

by propagating all changes tracked for the model 𝐶′

in domain "cmm" via xform.propagateDelta("cmm").

The synchronization is then performed by matching

the overlapping elements in 𝑌 ′
1 and 𝑌 ′

2 and the com-

plement 𝑌 ′
1∖𝑌 ′

2 is then merged into 𝑌 ′
2 via the operation

forwardSync.

1 edit.accept(getSourceModel());
2 xform.propagateDelta("cmm");
3 syncer.match();
4 syncer.forwardSync();

Listing 6: Propagating source changes.

7. Conclusions
The current solution provided at https://github.com/

arturboronat/ttc2023-bx implements the instantiation of

the pattern that synchronizes a container model 𝐶 with

an existing miniYAML model 𝑌2, including subsequent

edits on the source 𝐶 and on the target 𝑌2.

The reverse synchronization is yet to be implemented

by developing an opposite YAMTL transformation from

miniYAML configuration to the corresponding container

model. The rest of the arguments for the pattern param-

eters are provided as in the presented solution above.

The solution passes the tests batch forward and for-

ward incremental, without considering the order of the

references. Regarding the principle of least change, the

EMF-Syncer computes the parts of the model 𝑌1 that

differ from those in 𝑌2 merging only the parts that were

changed.

References
[1] A. Boronat, Expressive and efficient model transfor-

mation with an internal dsl of xtend, in: Proceedings

of the 21th ACM/IEEE International Conference on

MoDELS, ACM, 2018, pp. 78–88.

[2] A. Boronat, Code-first model-driven engineering:

On the agile adoption of mde tooling, in: Proceedings

of the 34th IEEE/ACM International Conference on

Automated Software Engineering (ASE 2019), San

Diego, CA, November 11-15, ACM, 2019.

[3] A. Boronat, Emf-syncer: scalable maintenance of

view models over heterogeneous data-centric soft-

ware systems at run time 1619-1374 (2023). URL:

https://doi.org/10.1007/s10270-023-01111-7.

[4] A. Boronat, Incremental execution of rule-based

model transformation, International Journal on Soft-

ware Tools for Technology Transfer 1433-2787 (2020).

URL: https://doi.org/10.1007/s10009-020-00583-y.

doi:10.1007/s10009-020-00583-y.

https://github.com/arturboronat/ttc2023-bx
https://github.com/arturboronat/ttc2023-bx
https://doi.org/10.1007/s10270-023-01111-7
https://doi.org/10.1007/s10009-020-00583-y
http://dx.doi.org/10.1007/s10009-020-00583-y

	1 Introduction
	2 YAMTL and EMF-syncer
	2.1 YAMTL
	2.2 EMF-Syncer

	3 Solution outline
	4 Transformation Container2MiniYAML
	5 Initiate synchronization Dialogue
	6 Performing and propagating source change
	7 Conclusions

