
Cheptre Solution to the TTC 2023 Incremental

Class2Relational Case

Frédéric Jouault1,2 and Nicolas Pouillard3

1University of Angers, LERIA, 49000 Angers, France
2ESEO-TECH / ERIS, 49100 Angers, France

3STACK’S

Abstract

This paper presents a batch solution to the TTC 2023 ”Incremental
MTL vs. GPLs: Class into Relational Database Schema” case. This
solution is expressed in a domain-specific language that is not a model
transformation language. It is therefore not of the kind of solutions that
were expected. However, we believe that valuable insights may be gained
from this experiment.

1 Introduction

The ”Incremental MTL vs. GPLs: Class into Relational Database Schema”
case [4] from the 2023 edition of the Transformation Tool Contest (TTC) asks
for solutions written in either a Model Transformation Language (MTL), or a
General Purpose Language (GPL). A MTL is a special kind of Domain-Specific
Language (DSL) intended to write model transformation programs. As such,
it typically offers higher-level constructs, such as model transformation rules,
than typically found in a GPL, such as Java. However, it seems that it should
also be possible to write a solution in a non-MTL DSL, for instance if it is
Turing complete, or if it at least provides some minimal facilities. This paper
investigates this idea by describing work on a solution written in a variant
of the Ceptre [6] DSL. This language is typically used to model generative
interactive systems, but we use it here to write a model transformation. The
presented solution is not yet incremental, but is already able to perform batch
computations. We believe that it should be possible to create an incremental
solution in this language. The batch solution could then be used as a baseline
to evaluate how much more complexity is required for an incremental one. This
paper is organized as follows: Section 2 gives a brief overview of Ceptre, and
the variant we used, called Cheptre. An overview of the solution is presented in
Section 3. Finally, Section 6 gives some concluding remarks.

1

2 Ceptre/Cheptre Overview

The Ceptre language is a logic programming language [1] based on linear logic [3].
Ceptre’s syntax is textual, and was created to model generative interactive sys-
tems, such as games and dynamic stories. The variant of Ceptre we use here is
called Cheptre, and offers a few extensions. The state of the system is called its
context, and is basically a multi-set of predicates. These predicates are consid-
ered as the truth currently holding. The programmer specifies rules to define
how this context may evolve over time. These rules follow the principles of
linear logic: they may consume or create predicates. For instance, the following
rule specifies that two coins are necessary to buy an apple:

buy-apple: coin * coin -o apple.

Ceptre identifiers may contain hyphens (”-”). An optional name may be
given to a rule by placing it at its beginning, and separating it with a colon.
Here, buy-apple is the name of the rule. The -o operator, which reads as lolli,
an abbreviation of lollipop, because of its shape, corresponds to linear logic
implication. Each rule has a left-hand side (LHS), and a right-hand side (RHS).
An empty LHS or RHS is denoted as (). The * operator, which reads as tensor,
is used to join multiple predicates. In the above example, coin, and apple are
two predicates. To be read as truth statements, they can be respectively read
as ”I own a coin” and ”I own an apple”. Notice the stark difference with the
classical variation of this statement: ”If (I own a coin) and (I own a coin) then
(I own an apple)” in which you keep your coins and get an apple.

Rules can be grouped into stages. There is exactly one stage in the context,
which denotes the current stage. Only rules that are within the current stage,
or that go out of it, are available for matching at any given time. A rule is
matched, and therefore fireable, if its LHS is matched. Matching a * b consists
in matching both a and b. Matching a predicate consists in finding it in the
context. When a rule is fired, the predicates it matched are removed from
the context, and the predicates that are specified on its RHS are added to
the context. When, in a given context, there are no fireable rules, quiescence
is reached. A special action is then automatically triggered and enables to
continue. In Ceptre, quiescence adds to the context the special predicate qui.
This makes it possible to specify rules that become fireable once a stage can no
longer make progress.

The ”$” modifier may be applied to LHS predicates, in order to specify that
they must be matched but not consumed. The Cheptre extension of Ceptre
also adds the ”?” modifier, which may be applied to RHS predicates, in order
to specify that they must be added to the context only if they are not already
present in it (otherwise they would be duplicated). For instance, in the following
rule, the agent (represented by variable A) must be at the store to buy an apple,
but buying an apple will not change the agent’s location. Moreover, after buying
an apple, the agent is remembered as an buyer if that was not already the case,
but buying multiple apples will not result in multiple instances of buyer A to
be in the context.

$at A store * coin * coin -o apple * ?buyer A.

2

Without these modifiers one would need to: restore the agent location in the
RHS, and also write another rule to remove duplicate buyer predicates, such
as:

at A store * coin * coin -o at A store * apple * buyer A.

merge-buyer-duplicates: buyer A * buyer A -o buyer A.

Predicates can contain data structures. Additionally, complex navigation
over the context, and these data structures, can be specified using a backward-
chaining Prolog [5]-like language construct called bwd relations.

Constructors for types, data, predicates, bwd relations, and rules must start
with a lower case character. Variable names start with an upper case character.
Atoms are another addition specific to Cheptre, inspired by αProlog [2]. Atoms
are strings with an interface limited to equality. They start with a single quote
(e.g., ’abc or ’Test142).

The Ceptre language being typed, it offers mechanisms to define types and
give type signatures to data constructors, predicates, and bwd relations.

Cheptre extends Ceptre with built-in functions, two of them being used in
this solution. try can be used to test if a predicate or bwd relation holds or not.
Using our previous example, we could use try to emulate the ? modifier. The
first rule can only fire when the agent is already a buyer, and the second one
can only fire when the agent is not a buyer.

$at A store * coin * coin * $buyer A -o apple.

$at A store * coin * coin * try (buyer A) == false

-o apple * buyer A.

Another built-in function used in this solution is fmt, it performs string
interpolation, and is used in the serialization step. Finally this solution uses
the built-in predicate called fresh. Used in a rule, it ensures that an atom has
never been used before.

3 Solution Overview

3.1 Architecture

We implemented the transformation itself as a set of rules contained in a single
stage named apply. However, we embedded this transformation stage into a
multi-stage Cheptre program, in order to be able to separate model loading,
transformation, and model serialization phases. Figure 1 represents all stages
as boxes, and rules that change stages, which we will call transitions below, as
arrows. Rule names are listed in each box below the stage name. Transitions
between stages are labeled with their LHS and RHS, which are all empty (i.e.,
()) here. This Cheptre program is launched by a Java driver.

The Java driver starts the Cheptre program in the idle stage. While in this
stage, the Cheptre pogram waits for the transition from idle to apply to be
explicitly fired. The Java driver then sets the context to be the source model.
This requires a conversion from XMI (loaded with EMF) to the Cheptre syntax,
which is implemented in Java. Then the Java driver fires the transition from

3

apply

class2Table
class2Table-out-col
dataType2Type
dataTypeAttribute2Column
multiValuedDataTypeAttribute2Column
classAttribute2Column
multiValuedClassAttribute2Column

idle

apply2

erase-in

remove-attr
remove-cref
remove-comp
remove-node
remove-link

wait-before-serialization

top-to-xml

create-txt-for-node
append-attr-value
append-cref-value

top-to-xml-close

close-tag

children-to-xml

concat-child
child-done
top-done
start
concat-tops

() -o ().

qui -o ().qui -o ().

() -o ().

qui -o ().

qui -o ().

qui -o ().

Figure 1: Cheptre solution stages

4

idle to apply. All transformation rules are then applied until no rule can be ap-
plied any more. The Cheptre program then automatically transitions to stage
wait-before-serialization, and waits for the transition to erase-in to be executed.
The next step consists in the Java driver firing this transition, which results in
all the rest of the program to be automatically executed. Once this has com-
pleted, the context contains an output predicate encapsulating an almost-XMI
serialization of the output model. It is not necessary to implement XMI serial-
ization in Cheptre, because it could have been implemented in Java. However,
having it in Cheptre may prove useful, if at least to provide more rule and stage
examples. Finally, the Java driver post-processes the Cheptre-generated XMI
before serializing it. The post-processing is necessary to implement the first-
ToLower helper, which is currently not implementable in Cheptre, which lacks
the appropriate string manipulation primitives. It also removes some artefacts
that would render the XMI invalid.

Stage apply2 contains an incomplete variant of the transformation, more fine-
grained, which should be a better starting point for an incremental solution. It
is currently not used, and only included as an example of an alternative way to
express model transformations in Cheptre.

4 Model Representation

We use four predicates to encode models:

• The node predicate represents a model element, and takes three argu-
ments. The first argument is an atom identifying the model to which the
element belongs. We use ’IN for the source model, and ’OUT for the target
model. The second argument is an atom identifying the meta-class that
types the model element (e.g., ’DataType for the DataType meta-class
of the Class metamodel). Finally, the third argument is an atom that
corresponds to the identifier of the model element.

• The attr predicate represents attribute values, and takes three arguments.
The first argument is an atom identifying the model element for which
this predicate specifies an attribute value. The second argument is an
atom identifying the feature for which this predicate specifies a value (e.g.,
’name for the name attribute of the NamedElt meta-class, or of the Named
meta-class). The third argument corresponds to the value. Values may
be strings (e.g., (str "a string")), booleans (e.g., (boolean true)) or
null (i.e., nullv).

• The cref predicate represents cross-references (i.e., references that are not
compositions), and takes three arguments. The first two arguments are the
same as for the attr predicate. The third and last argument corresponds
to the id of the model element that is the target of the reference.

• The comp predicate represents compositions (i.e., references that are con-
tainments), and takes three arguments. These arguments are the same as

5

Listing 1: Rule dataType2Type that transforms a source DataType into a target
Type

dataType2Type
: $node ’ IN ’DataType DT
∗ $a t t r DT ’name Name
∗ f r e s h ’ out
∗ t ry (l i n k DT) == f a l s e

−o node ’OUT ’Type ’ out
∗ a t t r ’ out ’name Name
∗ l i n k DT ’ out
.

for the cref predicate.

Additionally, the transformation makes use of the link predicate to represent
trace links. It takes two arguments: the identifiers of a source, and of a target
model elements.

5 Transformation Rules

The transformation rules basically correspond to the equivalent ATL rules, and
are given the same names, but starting with a lower case. There is one extra rule,
when compared to the ATL solution: class2Table-out-col, which is responsible
for attaching columns generated from single-valued attributes to the appropriate
target table. This must be specified separately, because no iteration mechanism
can be used within a rule in Cheptre. Variable names were chosen to be the
same as in the ATL transformation, except that they are in upper case (for
source elements), or atoms (for target elements).

Listing 1 gives the code of the simplest rule: dataType2Type, which we use
here as an example. Its LHS starts by matching the source element with the node
predicate (without consuming it, hence the $), storing its identifier in the DT
variable. It then matches the source element’s name attr (without consuming
it), storing its value in variable Name. The fresh built-in predicate is then used
to create a new atom, guaranteed to be distinct from any others (i.e., a unique
identifier), which is referenced as ’out within the scope of this rule. Finally, the
try built-in function is used to check that there is not already a trace link for
DT, otherwise the rule does not match.

The RHS of rule dataType2Type starts by creating a target element of type
’Type, by adding an instance of node to the context, with unique identifier ’out.
It then adds an instance of attr to the context, giving it the same value as the
source element’s. Finally, it adds a trace link between the source and target
elements to the context.

There are multiple ways to express model transformations in ATL. Our so-
lution is not tuned for performance.

6

Regarding syntactic complexity annotations: we only annotated the apply
stage, because the other stages are not part of the transformation itself.

6 Conclusion

This paper has presented a Cheptre solution to the ”Incremental MTL vs.
GPLs: Class into Relational Database Schema” case [4] TTC 2023 case. This
solution is not (yet) incremental. However, it provides an example of using a
non-MTL DSL to implement model transformation. Moreover, we believe that
we will be able to make it incremental, in time.

References

[1] Apt, K. R. Logic programming. Handbook of Theoretical Computer Sci-
ence, Volume B: Formal Models and Sematics (B) 1990 (1990), 493–574.

[2] Cheney, J., and Urban, C. Alpha-prolog: A logic programming language
with names, binding, and alpha-equivalence.

[3] Girard, J.-Y. Linear logic: Its syntax and semantics. In Proceedings of the
Workshop on Advances in Linear Logic (USA, 1995), Cambridge University
Press, p. 1–42.

[4] Greiner, S., Höppner, S., Jouault, F., Calvar, T. L., and
Clavreul, M. Incremental mtl vs. gpls: Class into relational database
schema. In Proceedings of the 15th Transformation Tool Contest (TTC 2023)
(July 2023).

[5] ISO, I., and ISO, I. IEC 13211-1: 1995: Information Technol-
ogy—Programming Languages—Prolog—Part 1: General Core. ISO:
Geneva, Switzerland, 1995.

[6] Martens, C. Ceptre: A language for modeling generative interactive sys-
tems. Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment 11, 1 (Nov. 2015), 51–57.

7

	Introduction
	Ceptre/Cheptre Overview
	Solution Overview
	Architecture

	Model Representation
	Transformation Rules
	Conclusion

