
Incremental ATL Solution to the TTC 2023

KMEHR to FHIR Case

Frédéric Jouault1,2, Théo Le Calvar3, and Matthew Coyle3

1University of Angers, LERIA, 49000 Angers, France
2ESEO-TECH / ERIS, 49100 Angers, France
3IMT Atlantique, LS2N (UMR CNRS 6004)

July 7, 2023

Abstract

This paper presents the ATOL solution to the TTC 2023 KMEHR
to FHIR case study. The ATOL compiler is an alternative ATL compiler
that enables incremental execution of ATL transformations. In this paper,
we explain how we used ATOL to make the original KMEHR to FHIR
ATL transformation incremental.

1 Introduction

With incremental model transformation engines, such as ATOL [5], NMF [2]
or YAMTL [1], it is possible, after an initial application of the transformation,
to detect changes on the source model and propagate these changes to affected
parts of the target model without re-executing the transformation on the whole
source model. This contrasts with traditional model transformation engines
that recompute the whole target model from scratch after each change on the
source model. Incremental model transformation engines are particularly useful
when the source model is large, the transformation is complex or the source
model is frequently modified.

This case study [6] involves translating between two medical data formats:
from the Belgium KMEHR format, to the international FHIR format. The refer-
ence transformation is written in modern ATL with advanced features leveraging
all features of the EMFTVM engine, such as multiple rule inheritance, mapsTo
or the improved matching plan.

The transformation consists in a relatively large transformation and several
helpers.

This paper is organized as follows. In section 2 we quickly present the
ATOL compiler. In section 3 we present the process we developed to produce
an ATL transformation compatible with ATOL. In section 4 we present the

1



results of our approach. In section 5 we detail differences between the reference
ATL transformation and our ATOL-compatible ATL transformation. Finally,
in section 6 we conclude.

2 ATOL Overview

ATOL [5] is an ATL compiler that produces Java code, which in turn uses the
Active Operations Framework to compute expressions incrementally. ATOL has
previously been showcased on TTC cases such as the TTC 2018 Social Media
Case [3] or the TTC 2021 Incremental Workflow Case [4].

Traditional ATL engines execute the whole transformation at once to pro-
duce a target model from a source model. This is referred to as batch execution.
With ATOL, the transformation is first applied to a source model to produce
a target model, like with a batch transformation. But, unlike with standard
ATL engines, ATOL keeps a propagation graph in memory. Using this graph,
changes applied on the source model can be propagated to the target without
recomputing the whole transformation. This allows for faster updates to the
target model at the cost of an increased memory footprint.

ATOL supports a subset of standard ATL. For instance, ATOL natively
supports only unique lazy rules, helpers, functional ATL, and parts of OCL
operations. It also differs from standard ATL on specific points. For instance,
ATOL requires target tuple navigation for called lazy rules (see Listing 1), it
also supports implicit collect on property navigation on collections.

1 rule SumEHRTransaction {

2 from
3 s : KMEHR!TransactionType
4 to
5 t : FHIR!Composition mapsTo s (
6 ...
7 section <- Sequence{
8 thisModule.MedicationSection(s).t,
9 thisModule.AllergyIntoleranceSection(s).t,

10 thisModule.ActiveProblemSection(s).t,
11 thisModule.ImmunizationSection(s).t,
12 thisModule.HistorySection(s).t
13 }
14 ),
15 ...
16 }

Listing 1: Part of a rule with target tuple navigation

3 Solution Overview

The proposed ATOL solution is similar to the reference ATL solution. However
some changes were made to make it compatible with ATOL. Figure 1 illustrates
the compilation pipeline of our ATOL solution.

2



Reference
ATL Solution

Simplified ATL
Solution

+ small adapations

Manual update
ATOL Compatible

ATL Solution

HOT

Java class

ATOL Compiler

Manually written
Xtend helpers

Generated
Java helpers

Source & Target
Metamodels

Xtend
Generator

Figure 1: Compilation pipeline or the ATOL solution

The reference ATL transformation uses many advanced feature of EMFTVM
and was not compatible with ATOL. For ATOL to be able to process it, we
updated the reference transformation to use simpler ATL constructs supported
by ATOL. These changes are done in two steps.

The first step is a manual rewriting of parts of the transformation to make
it compatible with ATOL (either by simplifying the transformation or adapt-
ing it to ATOL-specific syntaxes). These rewritings are either too small and
local to be worth automating (such as adding typing hints were ATOL fails
to properly compile) or require understanding of the transformation semantics
(such as rewriting rules with multiple inputs to rules with single inputs). Some
helpers that cannot be compiled with ATOL are also rewritten with native
Xtend code, such as the ATL helpers that used the #native syntax or the lazy
rules FhirString, FhirBoolean, FhirPositiveInt and FhirDecimal.

The second step is performed by a Higher Order Transformation (HOT)
written in ATL, and applied using a standard ATL engine. This HOT transforms
standard matched rules to unique lazy rules without guards, and produces a
RESOLVE helper that is used instead of rule matching in the transformation.
Listing 2 shows part of the generated helper.

After these two steps, the produced ATL transformation is compatible with
ATOL, and can be compiled to a Java class. The transformation is applied by
calling the now (as a result of the HOT) unique lazy rule DocumentRoot, which
transforms the root of the source model.

4 Results

The original ATL reference transformation is a batch transformation, thus the
case does not provide data to test changes on the source model. To evaluate the
correctness of our solution, we compared outputs of our solution with outputs
of the reference solution for the three given source models. When doing so, we
observed that our solution produces identical target models when serialized in
the FHIR format (ignoring attributes that rely on uuid, which are randomly
generated).

3



1 helper context OclAny def: RESOLVE : OclAny =

2 if if self.oclIsKindOf(KMEHR!DocumentRoot) then
3 let cp : KMEHR!DocumentRoot = self.oclAsType(KMEHR!DocumentRoot) in
4 true

5 else
6 false

7 endif then
8 thisModule.DocumentRoot(self.oclAsType(KMEHR!DocumentRoot )).t

9 else
10 if if self.oclIsKindOf(KMEHR!FolderType) then
11 let cp : KMEHR!FolderType = self.oclAsType(KMEHR!FolderType) in
12 not cp -- @type kmehr! FolderType
13 .patient -- @type kmehr! PersonType
14 .oclIsUndefined () -- @type Boolean
15 -- @type Boolean
16

17 else
18 false

19 endif then
20 thisModule.Folder(self.oclAsType(KMEHR!FolderType )).t

21 else
22 ...

Listing 2: Part of the generated RESOLVE helper

Overall, the structure of the transformation is close to the reference one.
However, compatibility with ATOL forces us to rewrite advanced ATL con-
structs. This can reduce transformation readability and maintainability.

Figures 2, 3 and 4 show runtime performance of our proposed solution. We
can see that both ATOL and reference solutions have similar performances for
load and initialization. For the actual application of the transformation, ATOL
is a bit slower with models of a smaller size but scales better than the reference
solution.

However, in Figure 5 we see that ATOL is consuming a lot more memory than
the reference solution. ATOL uses more memory because, on top of the trace,
it stores the propagation graph, which is needed to compute and propagate
updates when the source model changes. One should note that the current
version of our solution has not been optimized for memory and thus represent
a worst case scenario.

Basic incremental updates on the source model (e.g., modifying properties
of source elements) should work without issues. However, we know that null
values in the source model will most likely cause crashes because the original
transformation has not been strengthened against all possible null values.

The current implementation of ATOL also suffers of a known bug related
to the rule matching system we use. As described in section 3, we use a HOT
to replace all resolvings with a call to a resolve helper that calls the correct
rule. However, after the initial transformation is applied, source elements can
mutate, and they could now be matched by other rules. When this happen, the
old rule application should be removed/disabled, and the result of the new rule
application added. However, at the moment, ATOL cannot easily deactivate
the bindings of the old rule. Thus, changes are still propagated through the old

4



Size

2

3

1 10 100 1000

atol reference

Runtime - initialization

Figure 2: Initialization time in seconds for ATOL & reference solution

Size

0.4

0.6

0.8

1

2

1 10 100 1000

atol reference

Runtime - load 

Figure 3: Loading time in seconds for ATOL & reference solution

5



Size

0.5

1

5

10

50

1 10 100 1000

atol reference

Runtime - run 

Figure 4: Run time in seconds for ATOL & reference solution

Size

0.05

0.1

0.5

1

1 10 100 1000

atol reference

Memory usage - run

Figure 5: Memory usage in gigabits for ATOL & reference solution

6



rule bindings, which can cause crashes because of inconsistent properties. We
identified this issue with our TTC 2023 incremental Class to Relational case,
and are working on a fix.

5 Discussions

In section 3 we presented an overview of the changes we applied to the reference
ATL transformation. In this section we discuss, with more details, the kind of
changes we made to the reference solution, and why, as well as the improvements
we made to ATOL and the tooling around it.

5.1 Differences with the reference solution

We made two kinds of changes, some that simplified the transformation without
breaking compatibility with EMFTVM, and ATOL-specific changes.

5.1.1 Simplification

Helper inlining: ATOL currently only supports attribute helpers in the con-
text of source metamodel types. To circumvent this limitation, several helpers
on Strings were inlined (e.g. normalize or toGender). The impact of this
change is limited, because most of these helpers were rarely used.

Manual type hints in bindings: sometimes the Java code produced by
ATOL fails to compile because the Java compiler fails to unify the types. In
these situations, we added .oclAsType(<type>) operation calls to explicitly
type the expression, and fix these errors.

Rewriting of matched rules: as mentioned in section 3, ATOL only
supports unique lazy rules. In order to compile the transformation, we applied
a HOT that replaces all matched rules by unique lazy ones, adds a RESOLVE

helper that calls the correct rule for its source, and adds calls to that helper
when resolving is needed. This HOT is still a work in progress, and needs more
work before it can be released. That is why it is not present with the ATOL
solution. Instead, we provided both its source, and its target ATL files.

Rewriting rules with multiple inputs to single input: ATOL supports
calling lazy rules with multiple source elements but the HOT that transforms
matched rules to unique lazy ones does not. In the KMEHRToFHIR trans-
formation, rules with multiples inputs can easily be rewritten to rules with a
single input element, as other elements can be recovered using navigation. In
older versions of ATL, it was a good practice to avoid rules with multiple inputs
when non-necessary, to avoid the Cartesian product matching performance cost.
With recent improvements to the matching algorithm of EMFTVM (since ATL
4.8.0), this old guideline is not that relevant anymore.

Rewriting some lazy rules to unique lazy rules: unique lazy rules are
the only kind supported by ATOL, because in incremental contexts it is impor-
tant to keep caches and not recreates target elements. Most lazy rules in the ref-
erence transformation were replaced by unique lazy rules without troubles. For

7



the few ones that required the non-unique behavior (namely the FhirString,
FhirBoolean, FhirPositiveInt and FhirDecimal) we implemented them as
native Xtend helpers. For Coding and its subrules we added a naive support for
non-unique lazy rules to ATOL. Like the previous change, this is also a good
practice to prefer unique lazy rules instead of lazy rules when possible.

Rewriting a call to super rule into several call to subrules: in the
rule Folder, the original transformation computed the union of many elements
which are transformed by matched abstract rules. Because of typing issues with
ATOL we instead applied the subrules for each elements before merging them
in a single collection.

Rewriting of multiple inheritance in an additional rule: ATOL does
not support multiple rule inheritance. Multiple rule inheritance is only used once
in the transformation, for the SumEHRTransactionWithAuthorAndCustodian

rule. In our solution, we simply duplicated code from both inherited rules into
the subrule.

5.1.2 ATOL-specific Changes

Up to now, previous changes were compatible with other ATL engines. However,
ATOL provides features not supported by other engines, and also requires some
specific modifications.

Change to helper type declaration: enumeration types are handled
as Strings in ATOL, therefore all instances of enumeration literals types were
replaced by Strings.

Navigation into lazy rule target tuple: calling a lazy rule with ATOL
returns a target tuple, and not just the first element. Therefore, with ATOL, it
is mandatory to suffix all calls to lazy rules with the name of the element to be ac-
cessed in the target tuple (e.g. thisModule.CompositionBundleEntry(s.transaction).be).
This is a breaking change because other engines do not support this.

Replacement of the join helper with a native operation: the iterate
operation is not supported by ATOL. In this situation, the join helper that
used the iterate operation was replaced by a custom join operation written in
Xtend.

5.2 Improvements to ATOL

The KMEHR to FHIR transformation uses many aspects of ATL, several of
which were not handled by ATOL. In order to compile the transformation we
added support for:

• Maps and mutable sequences;

• custom join operation;

• initial support for non-unique lazy rules

• automated conversion between enumeration literals and Strings in our
helper generator.

8



6 Conclusion

In this paper, we presented our solution to the KMEHR to FHIR TTC 2023
case. This solution is based on the reference ATL solution but is compiled with
ATOL, which makes it incremental. Because ATOL supports only a subset of
ATL, changes to the reference transformation (both manual and automated)
had to be done.

We showed that runtime performance of the produced code is similar to the
reference solution with slightly better scaling. We also showed that the gener-
ated target models are identical to those generated by the reference solution.

Basic incrementality should be working. We identified several propagation
bugs due to the way the transformation is written, or because of known limita-
tions in ATOL.

Finally, this case allowed us to improve our HOT and ATOL compiler.

References

[1] Boronat, A. Expressive and efficient model transformation with an in-
ternal DSL of xtend. In Proceedings of the 21th ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems (oct 2018),
ACM.

[2] Hinkel, G. NMF: A multi-platform modeling framework. In Theory and
Practice of Model Transformation. Springer International Publishing, 2018,
pp. 184–194.

[3] Hinkel, G., Garcia-Dominguez, A., Schöne, R., Boronat, A., Tisi,
M., Calvar, T. L., Jouault, F., Marton, J., Nýıri, T., Antal, J. B.,
Elekes, M., and Szárnyas, G. A cross-technology benchmark for incre-
mental graph queries. Software and Systems Modeling 21, 2 (dec 2021),
755–804.

[4] Jouault, F., and Le Calvar, T. (Ab)using incremental ATL on the
TTC 2021 incremental laboratory workflow benchmark. In TTC 2020/2021
- Joint Proceedings of the 13th and 14th Tool Transformation Contests.
The TTC pandemic proceedings with CEUR-WS co-located with Software
Technologies: Applications and Foundations (STAF 2021), Virtual Event,
Bergen, Norway, July 17, 2020 and June 25, 2021 (2021).

[5] Le Calvar, T., Jouault, F., Chhel, C., and Clavreul, M. Efficient
ATL incremental transformations. J. Object Technol. 18, 3 (2019), 2:1–17.

[6] Wagelaar, D. The TTC 2023 KMEHR to FHIR Case. In TTC 2023
(2023).

9


	Introduction
	ATOL Overview
	Solution Overview
	Results
	Discussions
	Differences with the reference solution
	Simplification
	ATOL-specific Changes

	Improvements to ATOL

	Conclusion

