
Model-Driven Software Engineering Research Group

SOLVING THE QUALITY-BASED
SOFTWARE-SELECTION AND
HARDWARE-MAPPING PROBLEM
WITH ACO

Department of Software Engineering

University of Isfahan

Samaneh Hoseindoost s.hoseindoost@eng.ui.ac.ir

Meysam Karimi meysam.karimi@eng.ui.ac.ir

Shekoufeh Kolahdouz-Rahimi sh.rahimi@eng.ui.ac.ir

Bahman Zamani zamani@eng.ui.ac.ir

mailto:s.hoseindoost@eng.ui.ac.ir
mailto:meysam.karimi@eng.ui.ac.ir
mailto:sh.rahimi@eng.ui.ac.ir
mailto:zamani@eng.ui.ac.ir

SOLUTION OVERVIEW

2/15

There are some requested

components in each benchmark.

The solution model should contains some assignments:

one assignment for one requested component.

PARTIAL OF SOFTWARE MODEL

3/15

Each component has some

implementations.

SOLUTION OVERVIEW

4/15

There are some requested

components in each benchmark.

The solution model should contains some assignments:

one assignment for one requested component.

For each assignment, one of the implementation

of the component, should be selected. We select

it randomly.

PARTIAL OF SOFTWARE MODEL

5/15

Each implementation has a resource requirement and some

component requirements.

SOLUTION OVERVIEW

6/15

There are some requested

components in each benchmark.

The solution model should contains some assignments:

one assignment for one requested component.

For each assignment, one of the implementation

of the component, should be selected. We select

it randomly.

We select suitable

resources according to

the ACO algorithm.

THE GOAL:

The constraint is that:
 At most one implementation is deployed on each resource. So a resource could not be used in

two assignments.

For each assignment we have to find suitable component and resource

mappings such that, all required property clauses of the implementation and

all request constraints are fulfilled.

The final goal is to achieve a valid solution with minimum objective that is

constructed in minimum time.

7/15

ACO ALGORITHM OVERVIEW

 “Ant Colony Optimization (ACO) studies artificial systems that take inspiration from the

behavior of real ant colonies and which are used to solve discrete optimization problems.”
Source: ACO website, http://iridia.ulb.ac.be/~mdorigo/ACO/about.html

 Real ants use stigmergy. How?

 PHEROMONES!!!

 Social behavior of ants is driven by trail pheromone

 Mark the path for others

 Deposited while walking between food sources and nest

8/15

http://iridia.ulb.ac.be/~mdorigo/ACO/about.html

ACO ALGORITHM OVERVIEW
Probability of path selection:

𝑃𝑖𝑗 =
𝜏𝑖𝑗

𝛼
𝜂𝑖𝑗

𝛽

 ∀𝑗 𝜏𝑖𝑗
𝛼
𝜂𝑖𝑗

𝛽

Deposit Pheromone and Evaporation:

𝜏𝑖𝑗 = 𝜏𝑖𝑗 +
𝑄

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑖𝑗

𝜏𝑖𝑗 = (1 − 𝜌) ∗ 𝜏𝑖𝑗

Heuristic Information:
𝜂𝑖𝑗 =

1

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑖𝑗

9/15

1

2

j

m

i

ACO SOLVER OVERVIEW

ACO Solver has two main parts:

 In part 1 valid software solutions are generated.

 in part 2, the solutions are passed to swarm of ants for finding the best valid
solutions.

The population size and iteration size are predefined parameters that
determine the termination of parts 1 and 2, respectively.

10/15

https://github.com/Ariyanic/TTC18/tree/master/jastadd-mquat-solver-aco

https://github.com/Ariyanic/TTC18/tree/master/jastadd-mquat-solver-aco

PART 1: GENERATING VALID SOFTWARE SOLUTIONS

Initialize population size;

Initialize 𝜏0,𝛼,𝛽;

For(int pop=0; i < population size; pop++){

If time exceeds from maxSolvingTime: break;

create an empty solution.

For each requested components, create an empty assignment.

For each assignment i{

create a valid component mappings.

find the possible resources (i.e. the resources that not violated the required property clauses and request

constraints) from all of the available resources.

If an assignment has no possible resources: Ignore the solution.

Else: set 𝜏𝑖𝑗 = 𝜏0, 𝜂𝑖𝑗 =
1

𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡.𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒
and 𝑃𝑖𝑗 =

𝜏𝑖𝑗
𝛼
𝜂𝑖𝑗

𝛽

 ∀𝑗 𝜏𝑖𝑗
𝛼
𝜂𝑖𝑗

𝛽 for each

possible resources j

}

Save the solutions that all component mappings are valid and all assignments of it has at least one possible resource.

}
11/15

PART 2: FINDING THE BEST VALID SOLUTION

Initialize iteration size;

bestSolution = null;

For(int iteration=0; iteration< iteration size; iteration++){

If time exceeds from maxSolvingTime: break;

For each saved solution create an ant, and pass to current solution, possible resources, 𝜏, 𝜂 and P to it.

Run all ants in parallel

Update 𝜏 and P to new values

If (bestSolution is null or antSolution.objective < bestSolution.objective)

bestSolution = antSolution;

}

Return bestSolution;

12/15

RUNNING ANTS
Initialize 𝛼, 𝛽, 𝜌 and Q;

Sort the assignments of the solution based on the number of possible resources

For each assignments i {

if there is not any possible resource that has not been used by other assignment:

return null;

else:

select a possible resource j using Rolette Wheel mechanism that has not been used by other assignment.

Assign resource to the assignment

𝜏𝑖𝑗 = 𝜏𝑖𝑗 +
𝑄

𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡.𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒
;

𝜏𝑖𝑗 = (1 − 𝜌) ∗ 𝜏𝑖𝑗 ; //evaporation 𝜏 for the selected possible resource

𝑃𝑖𝑗 =
𝜏𝑖𝑗

𝛼
𝜂𝑖𝑗

𝛽

 ∀𝑗 𝜏𝑖𝑗
𝛼
𝜂𝑖𝑗

𝛽 ;

}

Return the solution;

13/15

RESULTS

For larger benchmark ACO Solver meets the time out.

14/15

CONCLUSION

The ACO algorithm is used to solve the Quality-based Software-
Selection and Hardware-Mapping problem.

The scalability, performance and quality of the proposed solution are
tested on different benchmarks.

The outcome indicates that this approach generates correct results for
the evaluated test cases.

Additionally, better results in terms of performance are given in
comparison with the results of the ILP algorithm in the case description.

15/15

