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Abstract 

The optimal mapping from software implementations to 

hardware components for a given set of user requests is a 

challenging topic which is presented in TTC 18. This paper 

presents a solution to this case using the ACO algorithm. 

 

 

1 Introduction 

The TTC 2018 case is a Searched Based Optimization Problem (SBSE) to provide an optimal mapping of 

software implementation to hardware components for a given set of user requests. In recent years, SBSE has 

been applied successfully in the area of model and program transformation [Fleck17], [Kappel12]. Variety of 

algorithms exist to solve optimization problems with large or infinite search spaces. In this paper, the Ant 

Colony Optimization (ACO), one of the most successful swarm intelligence algorithms, is applied for solving the 

TTC case.  

ACO is a comprehensive algorithm for solving discrete optimization problems. It is a constructive algorithm that 

in each step a feasible solution for the next step is constructed. Additionally, ACO is a population-based 

algorithm, in which each ant is a candidate solution in a solution space. The population size can be increased 

according to the problem. Importantly, each ant can run autonomously and this makes an optimal result in terms 

of performance, which is the main focus of the TTC case. 

The remainder of this paper is structured as follows. In section 2, the concept of ACO is overviewed. Section 3 

presents the proposed solution to the TTC case. The evaluation of ACO algorithm in terms of performance, 

quality and scalability is presented in Section 4. Finally, section 5 concludes the paper. 

2 ACO Overview 

ACO is one of the most successful swarm intelligence algorithms proposed by M. Dorigo [Dorigo92]. This 

algorithm is inspired by the foraging behavior of real ants in nature. In this algorithm ants communicate 

indirectly with each other through modification of environment. When an individual ant modifies the 

environment, others will realize and respond to the new modification. Real ants use a chemical trail called 

pheromone, which left on the ground during their trips to modify the environment. When another ant choosing 

their path, they tend to choose, paths marked by strong pheromone. This helps the ant to choose the best path. 

After an ant finding a food and returns to the nest, it will deposit pheromone again and emphasizes on the correct 

path. If an ant does not find a food it does not deposit pheromone on the path passed, previously. Figure 1 shows 

an experiment with a real colony of Argentine ants done by Goss et al. [Goss89]. They will choose a shorter 

route, gradually. When faced with an obstacle, there is an equal chance for an ant to choose a path (the left or 

right). As the left path is shorter than the right one, the ant eventually deposits a higher level of pheromone. 

More ants take the left path, when more level of pheromone will be on that path. 



 

Figure 1: Optimal Route Between Food And Nest By Real Colony of Ants 

 Since, the ants may not have chosen very good paths especially in the early stages, it is essential to gradually 

withdraw these paths from the candidates of new selections. Therefore, there is a need for a concept called 

evaporation. The evaporation causes the pheromones to evaporate gradually, in order to omit the inappropriate 

paths. 

Initialize including the pheromone trails, evaporation rate 

Repeat 

For each ant Do 

 Solution construction using pheromone trails 

 Evaporation 

 Reinforcement 

Until stopping criteria 

Output: Best solution found or a set of solutions  

Figure 2: Generic Algorithm Of ACO 

Figure 2 presents the generic algorithm of ACO. The parameters are set in the initialization phase of this 

algorithm. Most parameters of ACO are similar to population based metaheuristic algorithms including Genetic 

and PSO. However, important parameter which belongs to ACO, is pheromone initialization.  

Each artificial ant can be seen as a greedy procedure that constructs a feasible solution in probabilistic fashion. In 

each step an ant selects a path based on the pheromone and heuristic information. For example in Travel Sales 

Man (TSP) problem, it can be considered as the distance between cities that each artificial ant cares about to 

make a better choice. Equation 1 shows the decision transition probabilities. S shows not yet visited solutions in 

current iteration. 

Equation 1: Pij = {
(τij)

α
(ηij)

β

∑(τij)
α
(ηij)

β
, i ∈ [1, n], j ∈ S 

 After each ant made a feasible solution, pheromone trail, which is the most important concept of ant 

communication, will be updated in two phases. Reinforcement phase, where pheromone trails is updated based 

on the newly constructed solutions by colony in current iteration. Then, an evaporation phase is applied, where 

pheromone trail will decrease by a fixed proportion called evaporation rate.  

Equation 2: τij = τij + ∆ 

Equation 3: τij = (1 − ρ)τij 



Equation 2 shows updating pheromone. ∆ is a positive value added by ants in current iteration and τij shows the 

pheromone trail. Evaporation phase is shown in equation 3, where ρ shows evaporation rate which has been set 

in the initialization phase. 

3 Solving The Quality-Based Software-Selection And Hardware-Mapping As Model 

Transformation Problem With ACO 

In order to apply the ACO algorithm to this problem, first a swarm of ants is created by transforming the 

problem into an ACO specific solution. Following that each ant is evaluated and then deposited pheromone 

according to the result of evaluation. New solutions are then generated from heuristic information and the 

amount of pheromone deposited in predecessor iterations. The solutions are evaluated again to make better 

results. The algorithm is terminated according to the predefined condition and finally the best optimal result will 

be generated. The solution is available as a Github repository1. Additionally, the implementation is provided in 

Share virtual machine2. 

Fig. 3 presents the flowchart of the ACO Solver. This flowchart has two main parts. In part 1 valid software 

solutions are generated and in part 2, the solutions are passed to swarm of ants for finding the best valid 

solutions. The population size and iteration size are predefined parameters that determine the termination of parts 

1 and 2, respectively.  

In part 1 of the flowchart an empty solution is created and for every requested component of the problem model, 

a valid software assignment is added to the solution. Each component has an implementation list that one of 

them should be selected randomly for the assignment. Each implementation has some required components and 

resources that should be mapped to a valid component and resource aiming at generating better abject values. 

For mapping required component to a valid component, an implementation is selected randomly and then is 

checked if a valid assignment for the required component is provided. Another implementation is selected until a 

valid assignment is produced. Following that it is essential to map valid software assignments to their required 

resources. To this end, all resources of the model are tested for each valid software assignment. If a resource 

does not violate the validity of assignment, it will be added to the list of possible resources of assignment. The 

values of 𝜏, 𝜂 and 𝑝 are set for each resource of the list and  then saved into two dimension matrixes in which 

columns indicate assignments and rows represent resources. Each cell of the matrixes presents values of 𝜏, 𝜂, or 

p. An invalid hardware solution is recognized, if a solution contains an assignment with no possible resource. 

Any other solutions are considered as valid software after which possible valid hardware solutions are passed to 

the ants. 

In part 2, for each saved solution, an ant is created and the solution with its possible resource and the 𝜏, 𝜂 and 𝑝 

matrix are passed to the ant. Following that ants are run for finding the best solution. Additionally, the value of 

the 𝜏 and 𝑝 matrix is updated for running ants in the next iteration. At the end of each iteration, the best of ant 

solutions is added to an array. Finally, the algorithm is terminated according to the predefined condition, and the 

last solution of the array is identified as an optimal solution. 

Fig. 4 shows the flowchart of an ant.run() method. Each ant selects assignments of the received solution one by 

one with respect to a number of possible resources, such that assignments with the smallest number of possible 

resources have higher priority than other assignments. This is because the resource cannot be shared between 

more than one assignment. If an assignment with a small number of possible resources is investigated later, it is 

possible that all of its possible resources are allocated by other assignments, and therefore the solution becomes 

invalid. In this paper the map data structure is used for implementing this mechanism. Each map consists of keys 

and values. The key factors correspond to the number of possible resources and values relate to the index of the 

assignment. The map is constructed in the first part of the ACO Solver after finding possible resources, and then 

it is passed to the ant with the 𝜏, 𝜂, and 𝑝 parameters. In this step, each ant investigates the existence of possible 

resources for the selected assignment, which have not been used by other assignments. If a resource is found the 

ant calculates the probability of selecting any possible resources of the assignment.  It then selects one of them 

using a roulette wheel mechanism based on the probability of selecting the resource. If the Roulette Wheel 

selects an unused resource, the resource is allocated to the assignment, and the 𝜏 and 𝑝 for the selected resource 

are updated (based on equations 2 and 3). Finally, the updated solution with the best resource mapping is 

returned by the ant, if the process is terminated successfully for all the assignment of the solution.  

                                                           
1 https://github.com/Ariyanic/TTC18    
2 http://is.ieis.tue.nl/staff/pvgorp/share/?page=MyVirtualDiskImageBanners#XP-TUe_TTC18-ACO.vdi  

https://github.com/Ariyanic/TTC18
http://is.ieis.tue.nl/staff/pvgorp/share/?page=MyVirtualDiskImageBanners#XP-TUe_TTC18-ACO.vdi


 

Figure 3: The Flowchart of the ACO Solver – Part 1 

 



  

Figure 3: The Flowchart of the ACO Solver – Part 2 

 



 

 

Figure 4: The Flowchart of An Ant.Run() Method   



4 Evaluation 

The performance, quality and scalability of the proposed solution in this paper is evaluated for five benchmarks 

provided in the case description. Table 1 shows the results of evaluation, in which population and iteration size 

increase in order to find a better objective for the solution. All tests were carried out on a standard Windows 7 

PC using an Intel®Core™ i5-2430M with 2.40GHz processor and 4.00 GB RAM.  

Table 1: Evaluation results for our solution includes scalability level, performance and quality  

Scalability Level Population Size Iteration Size 
Execution Time 

(Performance) 

Best objective of the valid 

solution (Quality) 

trivial 1 1 8 ms 226823.67 

small 8 1 17 ms 34620.2 

small-many-hw 8 5 25 ms 34620.2 

small-complex-sw 80 1 991 ms 969897.3 

medium 50000 100 222961 ms 8658117.329 

 

5 Conclusion 

In the paper the ACO algorithm is used to solve the Quality-based Software-Selection and Hardware-Mapping 

problem. The scalability, performance and quality of the proposed solution are tested on different benchmarks. 

The outcome indicates that this approach generates correct results for the evaluated test cases. Additionally, 

better results in terms of performance are given in comparison with the results of the ILP algorithm in the case 

description. 
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