
Solving the TTC Movie Database Case with FunnyQT

Tassilo Horn
horn@uni-koblenz.de

April 15, 2014

Abstract

FunnyQT is a model querying and model transformation library for the functional Lisp-
dialect Clojure providing a rich and efficient querying and transformation API. This paper
describes the FunnyQT solution to the TTC 2014 Movie Database transformation case. All
core tasks and all extension tasks have been solved.

1 Introduction
This paper describes a solution of the TTC 2014 Movie Database Case [HKT14]. All core and
extension tasks have been solved, and the solution also scales well with large models. The solution
project is available on Github1, and it is set up for easy reproduction on the SHARE2 image
Ubuntu12LTS_TTC14_64bit_FunnyQT4.vdi.

The solution is implemented using FunnyQT [Hor13] which is a model querying and trans-
formation library for the functional Lisp dialect Clojure3. Queries and transformations are plain
Clojure programs using the features provided by the FunnyQT API. This API is structured into
several task-specific sub-APIs/namespaces, e.g., there is a namespace funnyqt.in-place contain-
ing constructs for writing in-place transformations, a namespace funnyqt.model2model containing
constructs for model-to-model transformations, a namespace funnyqt.bidi containing constructs
for bidirectional transformations, and so forth.

As a Lisp dialect, Clojure provides strong metaprogramming capabilities that are exploited
by FunnyQT in order to define several embedded domain-specific languages (DSL, [Fow10]) for
different tasks. For example, the pattern matching, in-place transformation, model-to-model
transformation, and bidirectional model transformation constructs are provided in terms of a
small, task-oriented DSL each.

FunnyQT currently supports querying and transforming EMF [SBPM08] and JGraLab4

TGraph models, and support for other modeling frameworks can be added without touching
FunnyQT’s internals. For both EMF and JGraLab, there is one FunnyQT core namespace (i.e.,
funnyqt.emf and funnyqt.tg) providing functions for accessing and manipulation models of that
kind using the framework’s terminology and giving access to any feature provided by that frame-
work. These core namespaces are complemented by a namespace funnyqt.generic which provides
functions for functionality available on all frameworks in a generic, framework-agnostic manner.

1https://github.com/tsdh/ttc14-movie-couples
2http://is.ieis.tue.nl/staff/pvgorp/share/
3http://clojure.org
4http://jgralab.uni-koblenz.de

1

mailto:horn@uni-koblenz.de
https://github.com/tsdh/ttc14-movie-couples
http://is.ieis.tue.nl/staff/pvgorp/share/
http://clojure.org
http://jgralab.uni-koblenz.de


2 Solution Description
In this section, the complete transformation and query specifications for all core and extension
tasks are going to be explained. In the listings given in the following, all function calls are shown
in a namespace-qualified form to make it explicit in which Clojure or FunnyQT namespace those
functions are defined. Clojure allows to define short aliases for used namespaces in order to allow
qualification while still being concise. Table 1 gives an overview of all namespaces used by the
solution, and the aliases used for accessing them.

Alias Namespace Description
emf funnyqt.emf Core EMF API
gen funnyqt.generic Generic model access functions
io clojure.java.io File IO functions
ip funnyqt.in-place In-place transformation API
poly funnyqt.polyfns Polymorphic function API
set clojure.set Set functions (e.g., union, intersection,...)
str clojure.string String utility functions
u funnyqt.utils Utility functions (e.g., error handling)

Table 1: Used Clojure and FunnyQT namespaces with their aliases

All function calls that are not qualified with an alias are calls to functions in the clojure.core
namespace which is available in any other namespace by default.

2.1 Task 1: Generating Test Data
The first task is generating test data. The case description [HKT14] illustrates the task with
Henshin rules. Since the rules actually don’t match anything but simply create new elements
in the model, we have implemented them as plain functions receiving the model and an integer
parameter i from which the movie ratings and actor names are derived.

The function create-positive!5 creates five movies, three actors, and two actresses. The
persons’ movies references are set as requested by the case description, i.e., every persons acts in
the second, third, and fourth movie, and the first two persons additionally act in the first movie
while the last two persons additionally act in the fifth movie.

Forward-looking to task 2, every invocation of the create-positive! function creates
(
5
2

)
= 10

couples with three common movies.

1 (defn ^:private create-positive! [model i]
2 (let [m1 (emf/ecreate! model ’Movie :rating (+ 0.0 (* 10 i)))
3 m2 (emf/ecreate! model ’Movie :rating (+ 1.0 (* 10 i)))
4 m3 (emf/ecreate! model ’Movie :rating (+ 2.0 (* 10 i)))
5 m4 (emf/ecreate! model ’Movie :rating (+ 3.0 (* 10 i)))
6 m5 (emf/ecreate! model ’Movie :rating (+ 4.0 (* 10 i)))]
7 (emf/ecreate! model ’Actor :name (str "a" (* 10 i)) :movies [m1 m2 m3 m4])
8 (emf/ecreate! model ’Actor :name (str "a" (+ 1 (* 10 i))) :movies [m1 m2 m3 m4])
9 (emf/ecreate! model ’Actor :name (str "a" (+ 2 (* 10 i))) :movies [m2 m3 m4])

10 (emf/ecreate! model ’Actress :name (str "a" (+ 3 (* 10 i))) :movies [m2 m3 m4 m5])
11 (emf/ecreate! model ’Actress :name (str "a" (+ 4 (* 10 i))) :movies [m2 m3 m4 m5])))

The create-negative! function is defined similarly. It also creates five movies and five persons
assigning ratings for the former and names for the latter. However, every pair of two of those

5The ^:private is a metadata annotation declaring that this function is private, i.e., it is not accessible from
another namespace.

2



persons have acted together in at most two movies, so there is no couple to be found in task 2
here.

12 (defn ^:private create-negative! [model i]
13 (let [m1 (emf/ecreate! model ’Movie :rating (+ 5.0 (* 10 i)))
14 m2 (emf/ecreate! model ’Movie :rating (+ 6.0 (* 10 i)))
15 m3 (emf/ecreate! model ’Movie :rating (+ 7.0 (* 10 i)))
16 m4 (emf/ecreate! model ’Movie :rating (+ 8.0 (* 10 i)))
17 m5 (emf/ecreate! model ’Movie :rating (+ 9.0 (* 10 i)))]
18 (emf/ecreate! model ’Actor :name (str "a" (+ 5 (* 10 i))) :movies [m1 m2])
19 (emf/ecreate! model ’Actor :name (str "a" (+ 6 (* 10 i))) :movies [m1 m2 m3])
20 (emf/ecreate! model ’Actress :name (str "a" (+ 7 (* 10 i))) :movies [m2 m3 m4])
21 (emf/ecreate! model ’Actress :name (str "a" (+ 8 (* 10 i))) :movies [m3 m4 m5])
22 (emf/ecreate! model ’Actress :name (str "a" (+ 9 (* 10 i))) :movies [m4 m5])))

The last function create-example is the entry point to the generation of synthetic test models.
It receives an integer parameter n, creates a new model (a resource in EMF parlance), and then
invokes the create-positive! and create-negative! rules n times with the new model and values for
i from 0 to n-1. Finally, the new model populated with the movies and actors is returned.

23 (defn create-example [n]
24 (let [model (emf/new-resource)]
25 (dotimes [i n]
26 (create-positive! model i)
27 (create-negative! model i))
28 model))

The create-example function is invoked by the benchmark runner with the n-values 1000, 2000,
3000, 4000, 5000, 10000, 50000, 100000, and 200000.

2.2 Task 2 & 3 and Extension Task 2 & 3: Finding Couples/Cliques
& Compute Average Rankings

As the case description already mentions, the Finding Cliques task is a generalization of the
Finding Couples task, so the FunnyQT solution solves both one go. For finding cliques of arbi-
trary sizes n ≥ 3, a higher-order transformation should be defined that creates a transformation
rule for that n. The FunnyQT solution also allows for n = 2 and deals with the fact that in this
case, Couple elements should be created rather than Clique elements.

Also, the computation of the average rankings of a couple’s or clique’s common movies is done
while creating the Couple or Clique element instead of doing it separately in a further step.

The higher-order transformation generating a FunnyQT in-place transformation rule for a
given n ≥ 2 is a Clojure macro. A macro is a function which is executed at compile-time by the
Clojure compiler. It receives code passed to it as arguments, processes it, and returns new code
that takes the place of it’s call. This new code is called the macro’s expansion. Because like
all Lisps, Clojure is homoiconic, i.e., Clojure code is represented using Clojure datastructures6
(literals, symbols, lists, vectors), a macro is essentially a transformation on the abstract syntax
tree of the Clojure code that’s passed to the macro.

Before discussing the rule generation macro, a few helper functions are going to be discussed.
Those will be used as constraints in the patterns of the generated rules.

1 (defn movie-count [p]
2 (.size ^java.util.Collection (emf/eget-raw p :movies)))
3
4 (defn person-count [m]
5 (.size ^java.util.Collection (emf/eget-raw m :persons)))
6
7 (defn movie-set [p]
8 (into #{} (emf/eget-raw p :movies)))

6In other words, Lisp and Clojure do not separate concrete and abstract syntax.

3



The function movie-count gets some Person element p and returns the number of movies that
this person has acted in. emf/eget-raw is a function that returns the value of some element’s
property without any conversion7, e.g., here an EMF EList object is returned and its size()
method (defined in the EMF Java API) is invoked. The syntax ^java.util.Collection is a type
hint which allows the Clojure compiler to generate byte-code for a direct rather than a reflective
Java method call (EList implements the Collection interface which declares the method size()).

Similarly, person-count returns the number of persons that acted in a given movie m.
Lastly, movie-set gets a person element p and returns the movies that person acted in as a

set. #{} is the empty Clojure set literal.
The avg-rating function shown in the next listing gets a collection of movie elements and

returns their average rating. The higher-order function map takes a function and a collection and
applies the function to each element of the collection returning the sequence of results, which is
the sequence of the given movies ratings here. reduce then aggregates the sequence using +, i.e.,
it computes the sum of all ratings. Finally, this sum is divided by the number of given movies.

9 (defn avg-rating [movies]
10 (/ (reduce + (map #(emf/eget % :rating) movies))
11 (count movies)))

The function n-common-movies? printed in the next listing gets an integer n, a person element
p, and additional person elements more8. If all given persons act together in at least n movies,
the set of common movies is returned. Otherwise, nil is returned. Since in Clojure the values
nil and false are falsy while every other value is truthy, this function can act as a predicate and
still return more information, i.e., the common movies, in the positive case.

12 (defn n-common-movies? [n p & more]
13 (loop [common (movie-set p), more more]
14 (when (>= (count common) n)
15 (if (seq more)
16 (recur (set/intersection common (movie-set (first more)))
17 (rest more))
18 common))))

The next listings shows the define-groups-rule macro which is the higher-order transformation
solving the task. It receives an parameter n and, as its name suggests, expands into a rule for
finding couples (if n equals 2) or cliques of size n.

19 (defmacro define-group-rule [n]
20 (let [psyms (map #(symbol (str "p" %)) (range n))]
21 ‘(ip/defrule ~(symbol (str "make-groups-of-" n "!"))
22 {:forall true :no-result-vec true}
23 [~’model ~’c]
24 [~’m<Movie>
25 :when (>= (person-count ~’m) ~n)
26 ~@(mapcat (fn [i]
27 (let [ps (nth psyms i)]
28 ‘[~’m -<persons>-> ~ps
29 :when (>= (movie-count ~ps) ~’c)
30 ~@(when-not (zero? i)
31 ‘[:when (neg? (compare (emf/eget-raw ~(nth psyms (dec i)) :name)
32 (emf/eget-raw ~ps :name)))])
33 ~@(when-not (or (zero? i) (= i (dec n)))
34 ‘[:when (n-common-movies? ~’c ~@(take (inc i) psyms))])]))
35 (range n))
36 :when-let [~’cms (n-common-movies? ~’c ~@psyms)]
37 :as [~’cms ~@psyms]
38 :distinct]

7The usual FunnyQT EMF property getter emf/eget coerces Java collections to immutable, persistent Clojure
collections. Since we are only interested in the size, this coercion would be superfluous overhead.

8The Clojure varargs syntax & els is similar to Java’s Type... els syntax.

4



39 (emf/ecreate! ~’model ~@(if (= n 2)
40 ‘[’Couple :p1 ~(first psyms) :p2 ~(second psyms)]
41 ‘[’Clique :persons [~@psyms]])
42 :commonMovies ~’cms :avgRating (avg-rating ~’cms)))))

We’re not going to discuss the macro in details, however the central idea of the Clojure (or
Lisp) macrosystem is that one defines the basic structure of the macro’s expansion using a quasi-
quoted (backticked) form as a kind of template. In this quasi-quoted form, values computed at
compile-time can be inserted using the unquote (~) and unquote-splicing (~@) operators to fill
the template’s variable parts. What the macro above generates is a (ip/defrule ...) FunnyQT
in-place transformation rule definition where the rule’s name is make-groups-of-<n>! (line 22),
where two special rule options are set (line 23), which has two parameters model and c (line 24),
a complex pattern involving constraints using the person-count, movie-count, and n-common-movies?
functions defined above (lines 25-39), and which finally contains an action to be applied to found
matches that creates either a Couple or a Clique and sets the common movies and average rating
(lines 40-43).

The last part of the implementation of the tasks 2 and 3 and the extension tasks 2 and 3 is
to actually invoke the macro to create the transformation rules for couples and cliques of 3, 4,
and 5 persons.

43 (define-group-rule 2) ;; make-groups-of-2!: The Couples rule
44 (define-group-rule 3) ;; make-groups-of-3!: The Cliques of Three rule
45 (define-group-rule 4) ;; make-groups-of-4!: The Cliques of Four rule
46 (define-group-rule 5) ;; make-groups-of-5!: The Cliques of Five rule

Instead of discussing the rule generation macro in details, it makes more sense to have an
in-depth look at one of its expansion like the one for n being 3 shown below. A FunnyQT in-place
transformation rule is defined whose name is make-groups-of-3!, and it gets as arguments the model
on which it should be applied, and an integer c which determines how many common movies a
clique of three persons needs to have. The case description fixes c to 3, but with this parameter,
we allow for a bit more generality.

Lines 4 to 12 define the rule’s pattern. The structural part defines that it matches a Movie
element m which references three Person elements p0, p1, and p2 using its persons reference.

Additionally, the pattern defines several constraints using the :when keyword. The movie m
needs to have at least three acting persons (line 4), and all persons need to act in at least c
movies (lines 5, 6, and 9). To avoid duplicate matches where only the order of the three person
elements differs, the constraints in line 7 and 10 enforce a lexicographically ascending order of
the names of the persons p0, p1, and p2.

1 (ip/defrule make-groups-of-3!
2 {:forall true, :no-result-vec true}
3 [model c]
4 [m<Movie> :when (>= (person-count m) 3)
5 m -<persons>-> p0 :when (>= (movie-count p0) c)
6 m -<persons>-> p1 :when (>= (movie-count p1) c)
7 :when (neg? (compare (emf/eget-raw p0 :name) (emf/eget-raw p1 :name)))
8 :when (n-common-movies? c p0 p1)
9 m -<persons>-> p2 :when (>= (movie-count p2) c)

10 :when (neg? (compare (emf/eget-raw p1 :name) (emf/eget-raw p2 :name)))
11 :when-let [cms (n-common-movies? c p0 p1 p2)]
12 :as [cms p0 p1 p2] :distinct]
13 (emf/ecreate! model ’Clique :persons [p0 p1 p2] :commonMovies cms
14 :avgRating (avg-rating cms)))

Furthermore, line 8 ensures that p0 and p1 have at least c common movies. The same for the
complete clique of three persons is also asserted in line 11, where the common movies are also
bound to the variable cms.

5



The constraints in lines 4, 5, 6, 8, and 9 are not really needed. Omitting them would result
is the very same set of matches. However, such a FunnyQT pattern is syntactic sugar for a
search starting at Movie elements m and iterating all combinations of the elements targeted by
their persons references, so it makes sense to add constraints as early as possible in order to
cut the search space. Clearly, if a movie has less than 3 actors, it can’t be part of a clique of
three. Likewise, persons that acted in less than c movies can’t be part of a clique that requires
c common movies. And similarly, if p0 and p1 do not have the required number of c common
movies, then p0, p1, and p2 cannot have them as well.

The last line of the pattern, line 12, defines that each match should be represented as a vector
containing the set of common movies cms and the three persons. The keyword :distinct specifies
that only distinct matches should be found. The reason is that if some clique of three acts in
x common movies, there are exactly x matches that differ only in the movie m. By omitting
the movie from the match representation and specifying that we are only interested in distinct
matches, those duplicates are suppressed.

The last two lines define the action that should be applied on matches. A new Clique element
is created that gets assigned the found persons with their common movies, and the average rating
of the common movies.

What has been skipped from explanation until now are the rule’s options specified in line 2.
The usual rule application semantics are that the rule finds exactly one match (the one it finds
first) and then applies its action on it. To transform all matches in the model, one would apply
the rule iteratively until no matches can be found anymore. This behavior is especially important
when a rule application generates new matches or invalidates existing matches. However, in this
case, neither of both is done. After a Clique has been created, the movie and the three persons
are still a valid match, so calling the rule repeatedly would create multiple Clique elements for the
same persons. One could use negative application conditions in order to forbid matches where
there is a Clique already, but the :forall option handles the case in a more concise and efficient
way. It specifies that when applying the rule all matches are searched at once, and then the
action is applied to each of them. On multi-core systems, FunnyQT automatically parallelizes
this search using Java 7’s ForkJoin library.

By default, such a :forall rule returns a sequence of rule application results (e.g., here a
sequence of Clique elements). The :no-result-vec option specifies that we don’t need this sequence
which will make the rule only return the number of matches it has processed in order to save
some memory.

2.3 Extension Task 1 & Extension Task 4: Compute Top-15 Couples
& Cliques

The case description demands for the Extension Tasks 1 and 4 the computation of the top-15
couples and cliques according to the criteria
(a) average rating of common movies, and
(b) number of common movies.

Whenever there’s a tie between two groups according to the current criterium of interest, the
case description allows for an arbitrary but stable order. The FunnyQT solution does a bit more:
if there’s a tie between two groups for the current criterium, the respective other criterium is
used to cut it. If that doesn’t suffice, i.e., both groups have the same average rating and number
of common movies, the names of the group’s members are compared as a fallback. Since the
person names are unique in the models, there is no chance that no distinction can be made.

The implementation is quite simple in that the sequence of all Couple elements (or all Clique
elements of a given size) are sorted using some comparator. Similar to Java, a comparator in

6



Clojure is a function that receives two objects and returns a negative integer if the first object
should be sorted before the second, a positive integer if the first object should be sorted after
the second item, and zero if both objects are equal with respect to sorting order.

The comparator for the average rating is shown in the following listing.

1 (defn rating-comparator [a b]
2 (compare (emf/eget b :avgRating) (emf/eget a :avgRating)))

As every comparator, it gets two objects a and b (here, two couples or cliques) and compares
them. compare is the standard Clojure comparator which works for objects of any class imple-
menting the java.lang.Comparable interface. Since we compare the average rating of b with the
average rating of a, a descending order is defined.

The comparator for the number of common movies is shown below.

3 (defn common-movies-comparator [a b]
4 (compare (.size ^java.util.Collection (emf/eget-raw b :commonMovies))
5 (.size ^java.util.Collection (emf/eget-raw a :commonMovies))))

Like with the person-count and movie-count functions above, we use type-hints to call the Java
method Collection.size() directly on the EList holding the common movies of the two groups a
and b.

For the next comparator that compares the two groups’ actors according to their names, we
need some helper functions first. Polyfns are FunnyQT’s way to define functions that dispatch
polymorphically according to the metamodel type of its first argument. First, a polyfn is declared
using declare-polyfn, and then arbitrary many implementations for different metamodel types can
be added using defpolyfn.

6 (poly/declare-polyfn actors [group])
7
8 (poly/defpolyfn actors movies.Couple [group]
9 [(emf/eget group :p1) (emf/eget group :p2)])

10
11 (poly/defpolyfn actors movies.Clique [group]
12 (emf/eget-raw group :persons))

In line 6, the polyfn actors with one parameter group is declared. Its intent is to return a
collection of all actors and actresses that are part of the given group.

In lines 7 and 8, one implementation for elements of metamodel type Couple is added. It
returns a vector of two elements: the person in the couple’s p1 reference, and the person in the
couple’s p2 reference.

Lines 9 and 10 define another implementation for elements of metamodel type Clique. Here,
the contents of the group’s persons reference is returned which already is the collection of all the
clique’s members.

Using this polyfn, the comparator for ordering groups according to the names of their members
can be defined like shown in the next listing.

13 (defn names-comparator [a b]
14 (compare (str/join ";" (map #(emf/eget % :name) (actors a)))
15 (str/join ";" (map #(emf/eget % :name) (actors b)))))

It simply compares the strings that result from interleaving each group’s actor names with
a semicolon as a separator. Since here we compare group a with group b, a lexicographically
ascending order is achieved.

Until now, there are only three individual comparators, but sorting is always done with one
single comparator. So the following listing defines a higher-order comparator, e.g., a function
that receives arbitrary many comparators and returns a new comparator which compares using
the given ones.

7



16 (defn comparator-combinator [& comparators]
17 (fn [a b]
18 (loop [cs comparators]
19 (if (seq cs)
20 (let [r ((first cs) a b)]
21 (if (zero? r)
22 (recur (rest cs))
23 r))
24 (u/errorf "%s and %s are incomparable!" a b)))))

The function comparator-combinator returns an anonymous function with two arguments a and
b. This function recurses9 over the given comparators. It applies the first one to a and b, and if
that results in a non-zero value returns this value. But if the value is zero, i.e., no distinction
with respect to sorting order can be made with that comparator, the function recurs and cs is
rebound to the remaining comparators. In case all comparators return zero for two given groups,
and error is signalled.

So finally, here are the two top-15 groups functions.

25 (defn groups-by-avg-rating [groups]
26 (sort (comparator-combinator rating-comparator common-movies-comparator names-comparator)
27 groups))
28
29 (defn groups-by-common-movies [groups]
30 (sort (comparator-combinator common-movies-comparator rating-comparator names-comparator)
31 groups))

groups-by-avg-rating gets a collection of groups groups and then sorts them by the combined
comparator first taking the average rating into account, then the number of common movies,
and eventually the names of the groups’ actors if neither of the two former comparators could
decide on the two groups order.

group-by-common-movies is defined similar except that the common-movies-comparator is applied
first instead of the rating-comparator.

Those where the actually important parts for solving the top-15 tasks. The solution contains
39 more lines of code that apply the sorting functions to the groups in a model, then take the
first 15 groups, format the results nicely, and spit them to files.

3 Evaluation
With respect to correctness, the FunnyQT solution computes the exact same numbers of couples
and cliques of various sizes as printed in Table 1 and Table 2 of the case description. Also, the
top-15 lists are identical for all models.

Table 2 shows the execution times for the synthetic models, and Table 3 shows the execution
times for the IMDb models. These times include the pattern matching time, the time needed
for creating the Couple and Clique elements, and the time needed for setting their attributes and
references including the computation of the average ratings. The times needed for generating
the synthetic models and for loading the IMDb models are excluded as are the query times for
computing the top-15 lists.

The benchmarks were run on a GNU/Linux virtual machine with eight 2.8GHz cores and
32GB of RAM, 30GB of which were dedicated to the JVM process.

As can be seen in Table 2, the FunnyQT solution scales completely linearly for the synthetic
models which is expected due to their construction.

9Clojure’s (loop [<bindings>] ... (recur <newvals>)) is a local tail-recursion. loop establishes bindings
just like let, and recur jumps back to the loop providing new values for the variables.

8



Model (N) Couples 3-Cliques 4-Cliques 5-Cliques
1000 0.274602528 0.349061152 0.483500704 0.422209712
2000 0.547466160 0.722435888 0.724224848 0.628254896
3000 0.867141568 1.069310832 1.028428128 0.949939408
4000 1.119036992 1.437665888 1.375804384 1.216168544
5000 1.406045888 1.798415536 1.723140656 1.502462976

10000 2.830416128 3.607990864 3.482801824 3.098102832
50000 14.324653712 17.972272736 17.346692096 15.327367392
100000 28.300907200 36.352164048 35.396692384 31.440208448
200000 57.159804192 72.209621472 69.233912672 60.430165808

Table 2: Execution times in seconds for the synthetic models

Model Couples 3-Cliques
imdb-0005000-49930.movies.bin 1.677278992 6.957570992
imdb-0010000-98168.movies.bin 1.702668160 11.333623024
imdb-0030000-207420.movies.bin 2.610028032 12.507362768
imdb-0045000-299504.movies.bin 3.947932624 15.714349728
imdb-0065000-404920.movies.bin 6.170203664 21.243492448
imdb-0085000-499995.movies.bin 9.012942560 26.388751712
imdb-0130000-709551.movies.bin 18.135307008 54.709762992
imdb-0200000-1004463.movies.bin 35.409998560 117.833811360
imdb-0340000-1505143.movies.bin 88.052992592 366.832061200
imdb-0495000-2000900.movies.bin 159.973018224 757.280006768
imdb-0660000-2501893.movies.bin 278.318685728 1457.689379247
imdb-all-3257145.movies.bin 619.160156640 4295.030516512

Table 3: Execution times in seconds for the IMDb models

9



In contrast, the transformation of the real IMDb models requires more effort in general
because they are much more cross-linked. Whereas in the synthetic models, every person acts
in at most five movies, and every movie has at most five acting persons, in the complete IMDb
model, there are persons acting in up to 1800 movies, and movies with more than 1200 actors.

The main bottleneck of the FunnyQT transformation is the required memory. The generated
rules for finding groups of a given size first compute all matches (each match being represented
as a vector containing the persons being members of the group plus their set of common movies)
and then generate one new couple or clique element for each match. This means that the original
model, all matches, and also all new elements reside in memory at the same time.

One could sacrifice a bit of performance for better memory-efficiency by not including the set
of common movies already in the matches, but instead re-compute it in the rule’s action creating
the couple or clique elements.

4 Conclusion
In this paper, the FunnyQT solution to the TTC 2014 Movie Database Case has been discussed.
It correctly solves all core and extension tasks, and its performance is quite good due to the fact
that FunnyQT is able to perform pattern matching in parallel on multi-core systems.

Also, the solution is concise. All in all, it consists of 152 lines of code (including boilerplace
code like namespace definitions) in three source files, one for the generation of the synthetic test
models (30 LOC), one for the couple and cliques rules (52 LOC), and one for the queries (70
LOC).

References
[Fow10] Martin Fowler. Domain-Specific Languages. Addison-Wesley Professional, 2010.

[HKT14] Tassilo Horn, Christian Krause, and Matthias Tichy. The ttc 2014 movie database
case. In Transformation Tool Contest 2014, 2014.

[Hor13] Tassilo Horn. Model querying with funnyqt - (extended abstract). In Keith Duddy
and Gerti Kappel, editors, ICMT, volume 7909 of Lecture Notes in Computer Science,
pages 56–57. Springer, 2013.

[SBPM08] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse
Modeling Framework. Addison-Wesley Professional, 2 edition, 2008.

10


	Introduction
	Solution Description
	Task 1: Generating Test Data
	Task 2 & 3 and Extension Task 2 & 3: Finding Couples/Cliques & Compute Average Rankings
	Extension Task 1 & Extension Task 4: Compute Top-15 Couples & Cliques

	Evaluation
	Conclusion

