
Incremental ATL Solution to the
TTC 2023

KMEHR to FHIR Case
Frédéric Jouault, Théo Le Calvar, and Matthew Coyle

1

Introduction

● Context
○ Medical data transformation

● Problem
○ The reference transformation has no support for incrementality

● Approach
○ Make it run with an incremental ATL engine: ATOL

● Results
○ Faster & (partially) incremental execution
○ This required some changes

■ Some manual changes to the original transformation
■ Compiler / pipeline improvements

2

ATOL Features

● Supports fine-grained online incremental execution of ATL transformations
● Compiles ATL to Java code

○ That makes use of the Active Operations Framework for incrementality
● Efficient initial & incremental computations

○ As demonstrated on
■ the Viatra CPS benchmark
■ the TTC 2018 social network case

● Provides a language extension mechanism
○ Example application

■ ATLc: coupling constraint solvers with transformations

3

Experimental Non-official Changes wrt. Classical ATL

● Implicit collect (non breaking)
● Navigation into lazy rule target tuples (breaking)

○ To make it possible to access other target elements
○ Alternative

■ Writing one rule per target element
● Which requires adding rule calls
● Whereas a simple variable access would

otherwise be enough

4

Getting the first target element Getting the second target element

Classical ATL thisModule.A2B(s) Impossible

ATOL thisModule.A2B(s).a thisModule.A2B(s).b

unique lazy rule A2B {
from a : MMA!A
to b : MMB!B,
 c : MMB!C

}

Current ATOL Compiler Limitations wrt. this Case

● No support for
○ Rule guards/filters
○ Multiple rule inheritance
○ Standard rules (only lazy ones are supported)
○ Rule-local variables (“using” block)
○ Enumeration literals
○ iterate expressions
○ #native code call
○ Lazy rule call without target tuple navigation

● Restrictions
○ Some navigations require disambiguation for the generated Java code
○ EMF does not generate change events for derived properties

■ They will not be incrementally updated
■ They could be rewritten as OCL helpers

● which would automatically make them incremental
● Some of these issues can be handled by pre-processing

5

ATOL Solution Overview

6

pre-processor

Changes Performed by the Pre-processing HOT

● Standard rules into unique lazy rules
● RESOLVE helper generation

○ To dispatch elements to the appropriate rules
● RESOLVE helper call insertions

○ Requires typing information

This pre-processing approach can be extended to automatically overcome more
compiler limitations.

7

Reference Transformation Simplifications

● These changes do not break compatibility with other ATL engines
● Improvements (arguably)

○ Changing some lazy rules into unique lazy rules
● Necessary because of current compiler limitations

○ Rewrote some calls to super-rules into calls to sub-rules
○ Removing multiple rule inheritance

■ In this case the cost is relatively low (duplicating two target pattern elements)
○ Refactored some expressions (inlining, helper extraction)

■ e.g., for rule-local variables
● Necessary because of current preprocessing HOT limitations

○ Rewriting source patterns with multiple elements into patterns with a single one
■ Because it is possible in this case & ATOL has no optimized local search plan

8

Reference Transformation Adaptations
● These changes break compatibility with other ATL engines
● Because of current ATOL limitations

○ Added disambiguation suffixes to property names
○ Used strings instead of enum literals
○ Native join operation to avoid unsupported iterate expression
○ #native calls rewrote into xtend helpers
○ Added target tuple navigation to lazy rule calls

● Robustness improvement
○ Added ->reject(e | e.oclIsUndefined()) on some singletons

9

Robustness Improvements for Incrementality

● Original transformation assumed source model was correct,
● Source model can be in an incorrect state when a set of change is applied,
● ATOL apply change atomically so the transformation has to deal with these

incorrect states,
● In order to have a working incremental transformation the code needs to be

hardened so that it can cope with incorrect values
○ Mostly dereferencing unset relations

● Possible action:
○ Introducing filters everywhere to remove null values

10

Memory & Runtime - Initialization

11

Memory & Runtime - Load

12

Memory & Runtime - Run

13

Memory Usage Considerations

● ATOL uses significantly more memory than ATL
○ Because it needs to keep the propagation graph

● We have not tried to optimize memory usage
● More caching is probably possible, with following strategies

○ Separating intermediate computations into distinct attribute helpers
■ Which will add a cache for each attribute hepler

○ Improving preprocessing
■ Performing this separation into distinct helpers automatically

○ Improving the ATOL compiler
■ Inserting caches without requiring distinct helpers

14

Conclusion

● ATOL is able to provide efficient incremental execution for ATL
transformations

● This case helped us more clearly identify
○ Some ATOL limitations
○ Ways to overcome them

15

Thanks for your attention!

16

Outline (see notes doc for more details)

● Introduction
○ Context
○ Problem: original transformation has no support for either incrementality (or bidirectionality)
○ Approach: make it run with an incremental ATL engine
○ Results: required some changes, but faster & (partially) incremental

● ATOL Overview
● Solution Overview
● Results

○ required changes: some to simplify the problem, some because of ATOL incompatibilities
○ faster, but more memory-hungry (which is typically an incrementality trade-off)
○ limitations

■ no bidir because of data type translations
■ Kinda broken incrementality

17

